Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Technical Paper

Building 3D SEA Models from Templates - New Developments

2003-05-05
2003-01-1541
Automobile sound package design requires that a Statistical Energy Analysis (SEA) model be built during initial stages of any vehicle program. This allows design changes, noise path analysis and optimization of the sound package to be performed before any program design freeze. The 3D model building process becomes a critical element since it involves many weeks of work before the model is ready for sound package definition and analysis. This paper introduces new developments in building 3D SEA models using templates. A new set of tools has been developed to further automate the SEA model building process. These tools should enable the user to develop a full vehicle SEA model within a few days. The productivity improvement gained by reducing model building time will allow for a more effective use of SEA models in the vehicle development cycle.
Technical Paper

Fundamental Studies of Polyurethane Foam for Energy Absorption in Automotive Interiors

1991-02-01
910404
This paper describes and characterizes energy-absorbing polyurethane foam as exemplified foam made with Bayfill EA systems. This paper emphasizes its use for automotive passive restraint systems. Static and dynamic properties will be presented. In addition the effect of velocity, weight, density, and vehicle environment on energy absorption will be discussed. RECENT federal requirements for the safety of occupants in automobiles has prompted the industry to investigate light weight and low cost materials for energy management. The use of passive restraints in interiors, i.e. air-bags, has necessitated the development of energy-absorbing instrument panels (IP) for passenger cars and multi-purpose vehicles. When air-bags are deployed in a collision the passenger tends to slide under the bag impacting the knee into the instrument panel. Foam as an energy absorbing material has played an important role in the development of knee bolsters for these interiors.
Technical Paper

High Performance Forged Steel Crankshafts - Cost Reduction Opportunities

1992-02-01
920784
Higher horsepower per liter engines have put more demand on the crankshaft, often requiring the use of forged steel. This paper examines cost reduction opportunities to offset the penalties associated with forged steel, with raw material and machinability being the primary factors evaluated. A cost model for crankshaft processing is utilized in this paper as a design tool to select the lowest cost material grade. This model is supported by fatigue and machinability data for various steel grades. Materials considered are medium carbon, low alloy, and microalloy steels; the effects of sulfur as a machining enhancer is also studied.
Technical Paper

RTM Body Panels for Viper Sports Car

1993-03-01
930468
Resin transfer molding (RTM) is the process of choice for the Body Panels of the Viper Sports car. The objective of this paper is to outline the reasons for the choice of RTM, and discuss development of technology for Class A surfaces and the paint system. Accomplishments to date and finally the work yet to be completed will also be defined. Conclusions from the work to date indicate that the RTM process enables a reduction in vehicle development time through faster prototypes and tool build times and that high quality, Class A surfaces can be successfully achieved even with epoxy tools. Additional work is ongoing to reduce cycle times and finishing costs, and to improve the in-process dimensional stability.
Technical Paper

Hydrogen Embrittlement in Automotive Fastener Applications

1996-02-01
960312
Fastener failure due to hydrogen embrittlement is of significant concern in the automotive industry. These types of failures occur unexpectedly. They may be very costly to the automotive company and fastener supplier, not only monetarily, but also in terms of customer satisfaction and safety. This paper is an overview of a program which one automotive company initiated to minimize hydrogen embrittlement in fasteners. The objectives of the program were two-fold. One was to obtain a better understanding of the hydrogen embrittlement phenomena as it relates to automotive fastener materials and processes. The second and most important objective, was to eliminate hydrogen embrittlement failures in vehicles. Early program efforts concentrated on a review of fastener applications and corrosion protection systems to optimize coated fasteners for hydrogen embrittlement resistance.
Technical Paper

Plastic Material Separation on Vehicle Subsystems

1997-02-24
970414
Hand dismantling of certain automotive parts has been an accepted process to remove high value materials, but in large scale recycling this may not be economical. In plastics, a pure non contaminated material stream is critical for maintaining high material values and this means designing plastic parts that can be machine separated. One candidate for separating the plastics in vehicle subsystems such as instrument panels and door trim panels is density separation. In order to better understand what processes are required to develop design requirements for automated plastic separation methods Chrysler and the Vehicle Recycling Partnership have undertaken a major materials separation study with MBA Polymers. In this paper, we describe the material separation methods and the application of these methods to three automotive interior assemblies.
Technical Paper

Common Tooling for Left-Hand and Right-Hand Instrument Panels

1997-02-24
970442
In many instances, automotive companies wish to create both a left-hand drive and a right-hand drive version of the same vehicle. When the vehicle has relatively low sales volumes, it is imperative to reduce investment costs wherever possible. One successful - if challenging - way is by producing the instrument panel system for both versions off the same tooling. This feat was accomplished in the case of the '97 Jeep® Wrangler, saving the company approximately $7 million.
Technical Paper

Comparison of Energy Management Materials for Head Impact Protection

1997-02-24
970159
Energy management materials are widely used in automotive interiors in instrument panel, knee bolster, and door absorber applications to reduce the risk of injury to an occupant during a crash. Automobile manufacturers must meet standards set by the National Highway Traffic Safety Administration (NHTSA) that identify maximum levels of injury to an occupant. The recent NHTSA upgrade to the Federal Motor Vehicle Safety Standard (FMVSS) 201 test procedure(1) for upper interior head impact protection has prompted energy management materials' use in several new areas of affected vehicles. While vehicle evaluations continue, results to date show that energy management foams can be effective in reducing the head injury criterion [HIC(d)] to acceptable government and OEM levels.
Technical Paper

The Lever Analogy: A New Tool in Transmission Analysis

1981-02-01
810102
A new tool for analyzing transmissions that use planetary gearsets is presented. With this tool, entire transmissions are usually represented by a single lever, and the calculation of most characteristics is as simple as summing moments of a lever. A miniature cookbook of levers, for various planetary arrangements is included which can be helpful in selecting a planetary to achieve the desired objectives of a user.
Technical Paper

A New Method of Predicting the Formability of Materials

1972-02-01
720019
The paper presents a new method, based on standard laboratory cup tests, for predicting the formability of materials; in the example provided, the forming potentials of four new materials are shown. The properties of stretchability and drawability, which are the principal factors defining a material's forming limits, may be assessed using the Olsen spherical cup test and the Swift flat-bottomed cup test. In the shape analysis procedure described, the minimum amount of deformation needed to fix a desired shape is determined. Then necessary adjustments to tooling for optimum sheet metal usage are made based on calculations from a new type of chart showing stretch forming ratio and draw forming ratio, providing a comparison of the formabilities of a number of materials.
Technical Paper

A Procedure for Measuring Instrument Panel Visibility

1972-02-01
720232
A procedure has been developed for measuring the relative visibility of automotive instrument panel graphics and components. Through use of a Luckiesh-Moss Visibility Meter, discreet values of visibility can be assigned to visual targets and related to driver reaction time. Also, eyes off the road lapsed time boundaries may be established which will define visibility requirements necessary to serve the total driver population. These requirements can be translated into meaningful guidelines or standards for visibility attributes such as size, shape, color, contrast, and position of graphics, controls, and indicators. How visibility measurements are made and interpreted and the visibility measuring facility are discussed in this paper.
Technical Paper

Computer Aided Design Analysis of Instrument Panel Impact Zone

1983-02-01
830260
In anticipation of complying with European standards for impact protection, an instrument panel design was analyzed to determine A. impact zone boundaries B. impact test velocitiesfor the head of a front seat passenger. Chrysler computer aided design (C.A.D.) surfacing capabilities were utilized in the solution. Early knowledge of impact zone location is important to intelligent design decisions; knowledge of impact velocities aids in performing compliance testing.
Technical Paper

Stiffness Simulation Techniques and Test Correlations in Automotive Interior Cockpit Systems (IP, Door Trim and Floor Console Assembly)

2014-04-01
2014-01-1025
An automotive cockpit module is a complex assembly, which consists of components and sub-systems. The critical systems in the cockpit module are the instrument panel (IP), the floor console, and door trim assemblies, which consist of many plastic trims. Stiffness is one of the most important parameters for the plastic trims' design, and it should be optimum to meet all the three functional requirements of safety, vibration and durability. This paper presents how the CAE application and various other techniques are used efficiently to predict the stiffness, and the strength of automotive cockpit systems, which will reduce the product development cycle time and cost. The implicit solver is used for the most of the stiffness analysis, and the explicit techniques are used in highly non-linear situations. This paper also shows the correlations of the CAE results and the physical test results, which will give more confidence in product design and reduce the cost of prototype testing.
X