Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A History of Space Toxicology Mishaps: Lessons Learned and Risk Management

2009-07-12
2009-01-2591
After several decades of human spaceflight, the community of space-faring nations has accumulated a diverse and sometimes harrowing history of toxicological events that have plagued human space endeavors almost from the very beginning. Some lessons have been learned in ground-based test beds and others were discovered the hard way - when human lives were at stake in space. From such lessons one can build a risk-management framework for toxicological events to minimize the probability of a harmful exposure, while recognizing that we cannot predict all possible events. Space toxicologists have learned that relatively harmless compounds can be converted by air revitalization systems into compounds that cause serious harm to the crew.
Journal Article

Modeling and Simulation of a Series Hybrid CNG Vehicle

2014-04-01
2014-01-1802
Predicting fuel economy during early stages of concept development or feasibility study for a new type of powertrain configuration is an important key factor that might affect the powertrain configuration decision to meet CAFE standards. In this paper an efficient model has been built in order to evaluate the fuel economy for a new type of charge sustaining series hybrid vehicle that uses a Genset assembly (small 2 cylinders CNG fueled engine coupled with a generator). A first order mathematical model for a Li-Ion polymer battery is presented based on actual charging /discharging datasheet. Since the Genset performance data is not available, normalized engine variables method is used to create powertrain performance maps. An Equivalent Consumption Minimization Strategy (ECMS) has been implemented to determine how much power is supplied to the electric motor from the battery and the Genset.
Technical Paper

Teen Drivers’ Understanding of Instrument Cluster Indicators and Warning Lights from a Gasoline, a Hybrid and an Electric Vehicle

2020-04-14
2020-01-1199
In the U.S., the teenage driving population is at the highest risk of being involved in a crash. Teens often demonstrate poor vehicle control skills and poor ability to identify hazards, thus proper understanding of automotive indicators and warnings may be even more critical for this population. This research evaluates teen drivers’, between 15 to 17 years of age, understanding of symbols from vehicles featuring advanced driving assistant systems and multiple powertrain configurations. Teen drivers’ (N=72) understanding of automotive symbols was compared to three other groups with specialized driving experience and technical knowledge: automotive engineering graduate students (N=48), driver rehabilitation specialists (N=16), and performance driving instructors (N=15). Participants matched 42 symbols to their descriptions and then selected the five symbols they considered most important.
Journal Article

Control of a Thermoelectric Cooling System for Vehicle Components and Payloads - Theory and Test

2017-03-28
2017-01-0126
Hybrid vehicle embedded systems and payloads require progressively more accurate and versatile thermal control mechanisms and strategies capable of withstanding harsh environments and increasing power density. The division of the cargo and passenger compartments into convective thermal zones which are independently managed can lead to a manageable temperature control problem. This study investigates the performance of a Peltier-effect thermoelectric zone cooling system to regulate the temperature of target objects (e.g., electronic controllers, auxiliary computer equipment, etc) within ground vehicles. Multiple thermoelectric cooling modules (TEC) are integrated with convective cooling fans to provide chilled air for convective heat transfer from a robust, compact, and solid state device. A series of control strategies have been designed and evaluated to track a prescribed time-varying temperature profile while minimizing power consumption.
Journal Article

Control Allocation for Multi-Axle Hub Motor Driven Land Vehicles

2016-04-05
2016-01-1670
This paper outlines a real-time hierarchical control allocation algorithm for multi-axle land vehicles with independent hub motor wheel drives. At the top level, the driver’s input such as pedal position or steering wheel position are interpreted into desired global state responses based on a reference model. Then, a locally linearized rigid body model is used to design a linear quadratic regulator that generates the desired global control efforts, i.e., the total tire forces and moments required track the desired state responses. At the lower level, an optimal control allocation algorithm coordinates the motor torques in such a manner that the forces generated at tire-road contacts produce the desired global control efforts under some physical constraints of the actuation and the tire/wheel dynamics. The performance of the proposed control system design is verified via simulation analysis of a 3-axle heavy vehicle with independent hub-motor drives.
Technical Paper

Machine Learning Based Optimal Energy Storage Devices Selection Assistance for Vehicle Propulsion Systems

2020-04-14
2020-01-0748
This study investigates the use of machine learning methods for the selection of energy storage devices in military electrified vehicles. Powertrain electrification relies on proper selection of energy storage devices, in terms of chemistry, size, energy density, and power density, etc. Military vehicles largely vary in terms of weight, acceleration requirements, operating road environment, mission, etc. This study aims to assist the energy storage device selection for military vehicles using the data-drive approach. We use Machine Learning models to extract relationships between vehicle characteristics and requirements and the corresponding energy storage devices. After the training, the machine learning models can predict the ideal energy storage devices given the target vehicles design parameters as inputs. The predicted ideal energy storage devices can be treated as the initial design and modifications to that are made based on the validation results.
Journal Article

Aerodynamics of a Pickup Truck: Combined CFD and Experimental Study

2009-04-20
2009-01-1167
This paper describes a computational and experimental effort to document the detailed flow field around a pickup truck. The major objective was to benchmark several different computational approaches through a series of validation simulations performed at Clemson University (CU) and overseen by those performing the experiments at the GM R&D Center. Consequently, no experimental results were shared until after the simulations were completed. This flow represented an excellent test case for turbulence modeling capabilities developed at CU. Computationally, three different turbulence models were employed. One steady simulation used the realizable k-ε model. The second approach was an unsteady RANS simulation, which included a turbulence closure model developed in-house. This simulation captured the unsteady shear layer rollup and breakdown over the front of the hood that was expected and seen in the experiments but unattainable with other off-the-shelf turbulence models.
Journal Article

Vehicle Road Runoff and Return - Effect of Limited Steering Intervention

2011-04-12
2011-01-0583
Vehicle safety remains a significant concern for consumers, government agencies, and automotive manufacturers. One critical type of vehicle accident results from the right or left side tires leaving the road surface and then returning abruptly due to large steering wheel inputs (road runoff and return). A subset of runoff road crashes that involve a steep hard shoulder has been labeled shoulder induced accidents. In this paper, a limited authority real time steering controller has been developed to mitigate shoulder induced accidents. A Kalman Filter based tire cornering stiffness estimation technique has been coupled with a feedback controller and driver intention module to create a safer driving solution without excessive intervention. In numerical studies, lateral vehicle motion improvements of 30% were realized for steering intervention. Specifically, the vehicle crossed the centerline after 1.0 second in the baseline case versus 1.3 seconds with steering assistance at 60 kph.
Journal Article

A Virtual Driving Education Simulation System - Hardware and Software with Pilot Study

2013-04-08
2013-01-1407
Novice drivers are often ill-equipped to safely operate a motor vehicle due to their limited repertoire of skills and experiences. However, automotive simulation tools can be applied to better educate young drivers for a number of common driving scenarios. In this paper, the Clemson Automotive Training System (CATS) will be presented to educate and train novice drivers to safely operate four wheel passenger vehicles on paved roadways. A portable automotive simulator can be programmed to emulate a variety of high-crash rate scenarios and roadway geometries. Drivers receive instructions regarding proper driving techniques and behaviors with an opportunity to practice the given vehicle maneuver. An on-line evaluation methodology has been designed to analyze the drivers' capabilities at handling these roadway events. First, a pre-simulation questionnaire evaluates their basic understanding of everyday driving situations.
Technical Paper

Investigation of Rollover, Lateral Handling, and Obstacle Avoidance Maneuvers of Tactical Vehicles

2006-10-31
2006-01-3569
Current military operations in Iraq and Afghanistan are unique because the battlefield can be described as a non-linear, asymmetrical environment. Units operate in zones that are susceptible to enemy contact from any direction at any time. The response to these issues has been the addition of add-on armor to HMMWV's and other tactical vehicles. The retro-fitting of armor to these vehicles has resulted in many accidents due to rollover and instability. The goal of this paper is to determine possible causes of the instability and rollover of up-armored tactical vehicles and to develop simulation tools that can analyze the steady-state and transient dynamics of the vehicles. Models and simulations include a steady-state rollover scenario, analysis of understeer gradient, and a transient handling analysis that uses models of both a human driver and a vehicle to analyze vehicle response to an obstacle avoidance maneuver.
Technical Paper

Obstacle Avoidance Using Model Predictive Control: An Implementation and Validation Study Using Scaled Vehicles

2020-04-14
2020-01-0109
Over the last decade, tremendous amount of research and progress has been made towards developing smart technologies for autonomous vehicles such as adaptive cruise control, lane keeping assist, lane following algorithms, and decision-making algorithms. One of the fundamental objectives for the development of such technologies is to enable autonomous vehicles with the capability to avoid obstacles and maintain safety. Automobiles are real-world dynamical systems - possessing inertia, operating at varying speeds, with finite accelerations/decelerations during operations. Deployment of autonomy in vehicles increases in complexity multi-fold especially when high DOF vehicle models need to be considered for robust control. Model Predictive Control (MPC) is a powerful tool that is used extensively to control the behavior of complex, dynamic systems. As a model-based approach, the fidelity of the model and selection of model-parameters plays a role in ultimate performance.
Technical Paper

Benchmarking the Localization Accuracy of 2D SLAM Algorithms on Mobile Robotic Platforms

2020-04-14
2020-01-1021
Simultaneous Localization and Mapping (SLAM) algorithms are extensively utilized within the field of autonomous navigation. In particular, numerous open-source Robot Operating System (ROS) based SLAM solutions, such as Gmapping, Hector, Cartographer etc., have simplified deployments in application. However, establishing the accuracy and precision of these ‘out-of-the-box’ SLAM algorithms is necessary for improving the accuracy and precision of further applications such as planning, navigation, controls. Existing benchmarking literature largely focused on validating SLAM algorithms based upon the quality of the generated maps. In this paper, however, we focus on examining the localization accuracy of existing 2-dimensional LiDAR based indoor SLAM algorithms. The fidelity of these implementations is compared against the OptiTrack motion capture system which is capable of tracking moving objects at sub-millimeter level precision.
Technical Paper

Engine-in-the-Loop Study of a Hierarchical Predictive Online Controller for Connected and Automated Heavy-Duty Vehicles

2020-04-14
2020-01-0592
This paper presents a cohesive set of engine-in-the-loop (EIL) studies examining the use of hierarchical model-predictive control for fuel consumption minimization in a class-8 heavy-duty truck intended to be equipped with Level-1 connectivity/automation. This work is motivated by the potential of connected/automated vehicle technologies to reduce fuel consumption in both urban/suburban and highway scenarios. The authors begin by presenting a hierarchical model-predictive control scheme that optimizes multiple chassis and powertrain functionalities for fuel consumption. These functionalities include: vehicle routing, arrival/departure at signalized intersections, speed trajectory optimization, platooning, predictive optimal gear shifting, and engine demand torque shaping. The primary optimization goal is to minimize fuel consumption, but the hierarchical controller explicitly accounts for other key objectives/constraints, including operator comfort and safe inter-vehicle spacing.
Technical Paper

Crew Exploration Vehicle Environmental Control and Life Support Design Reference Missions

2007-07-09
2007-01-3041
In preparation for the contract award of the Crew Exploration Vehicle (CEV), the National Aeronautics and Space Administration (NASA) produced two design reference missions for the vehicle. The design references used teams of engineers across the agency to come up with two configurations. This process helped NASA understand the conflicts and limitations in the CEV design, and investigate options to solve them.
Technical Paper

Access Systems for Partial Gravity Exploration & Rescue: Results from Prototype Testing in an Analog Environment

2007-07-09
2007-01-3033
An EVA simulation with a medical contingency scenario was conducted in 2006 with the NASA Haughton-Mars and EVA Physiology System and Performance Projects, to develop medical contingency management and evacuation techniques for planetary surface exploration. A rescue/evacuation system to allow two rescuer astronauts to evacuate one incapacitated astronaut was evaluated. The rescue system was utilized effectively to extract an injured astronaut up a slope of15-25° and into a surface mobility rover for transport to a simulated habitat for advanced medical care. Further research is recommended to evaluate the effects of reduced gravity and to develop synergies with other surface systems for carrying out the contingency procedures.
Technical Paper

Weathering of Thermal Control Coatings

2007-07-09
2007-01-3020
Spacecraft radiators reject heat to their surroundings. Radiators can be deployable or mounted on the body of the spacecraft. NASA's Crew Exploration Vehicle is to use body mounted radiators. Coatings play an important role in heat rejection. The coatings provide the radiator surface with the desired optical properties of low solar absorptance and high infrared emittance. These specialized surfaces are applied to the radiator panel in a number of ways, including conventional spraying, plasma spraying, or as an appliqué. Not specifically designed for a weathering environment, little is known about the durability of conventional paints, coatings, and appliqués upon exposure to weathering and subsequent exposure to solar wind and ultraviolet radiation exposure. In addition to maintaining their desired optical properties, the coatings must also continue to adhere to the underlying radiator panel.
Technical Paper

Overview of Potable Water Systems on Spacecraft Vehicles and Applications for the Crew Exploration Vehicle (CEV)

2007-07-09
2007-01-3259
Providing water necessary to maintain life support has been accomplished in spacecraft vehicles for over forty years. This paper will investigate how previous U.S. space vehicles provided potable water. The water source for the spacecraft, biocide used to preserve the water on-orbit, water stowage methodology, materials, pumping mechanisms, on-orbit water requirements, and water temperature requirements will be discussed. Where available, the hardware used to provide the water and the general function of that hardware will also be detailed. The Crew Exploration Vehicle (CEV or Orion) water systems will be generically discussed to provide a glimpse of how similar they are to water systems in previous vehicles. Conclusions, questions, and recommendations on strategies that could be applied to CEV based on previous spacecraft water system lessons learned will be made.
Technical Paper

Crew Exploration Vehicle Environmental Control and Life Support Fire Protection Approach

2007-07-09
2007-01-3255
As part of preparing for the Crew Exploration Vehicle (CEV), the National Aeronautics and Space Administration (NASA) worked on developing the requirements to manage the fire risk. The new CEV poses unique challenges to current fire protection systems. The size and configuration of the vehicle resembles the Apollo capsule instead of the current Space Shuttle or the International Space Station. The smaller free air volume and fully cold plated avionic bays of the CEV requires a different approach in fire protection than the ones currently utilized. The fire protection approach discussed in this paper incorporates historical lessons learned and fire detection and suppression system design philosophy spanning from Apollo to the International Space Station.
Technical Paper

A New Method for Breath Capture Inside a Space Suit Helmet

2007-07-09
2007-01-3248
This project investigates methods to capture an astronaut's exhaled carbon dioxide (CO2) before it becomes diluted with the high volumetric oxygen flow present within a space suit. Typical expired breath contains CO2 partial pressures (pCO2) in the range of 20-35 mm Hg (.0226-.046 atm). This research investigates methods to capture the concentrated CO2 gas stream prior to its dilution with the low pCO2 ventilation flow. Specifically this research is looking at potential designs for a collection cup for use inside the space suit helmet. The collection cup concept is not the same as a breathing mask typical of that worn by firefighters and pilots. It is well known that most members of the astronaut corps view a mask as a serious deficiency in any space suit helmet design. Instead, the collection cup is a non-contact device that will be designed using a detailed Computational Fluid Dynamic (CFD) analysis of the ventilation flow environment within the helmet.
Technical Paper

Development of a Test Facility for Air Revitalization Technology Evaluation

2007-07-09
2007-01-3161
Development of new air revitalization system (ARS) technology can initially be performed in a subscale laboratory environment, but in order to advance the maturity level, the technology must be tested in an end-to-end integrated environment. The Air Revitalization Technology Evaluation Facility (ARTEF) at the NASA Johnson Space Center (JSC) serves as a ground test bed for evaluating emerging ARS technologies in an environment representative of spacecraft atmospheres. At the center of the ARTEF is a hypobaric chamber which serves as a sealed atmospheric chamber for closed loop testing. A Human Metabolic Simulator (HMS) was custom-built to simulate the consumption of oxygen, and production of carbon dioxide, moisture and heat by up to eight persons. A variety of gas analyzers and dew point sensors are used to monitor the chamber atmosphere and the process flow upstream and downstream of a test article. A robust vacuum system is needed to simulate the vacuum of space.
X