Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Journal Article

Effects of Material Properties on Static Load-Deflection and Vibration of a Non-Pneumatic Tire During High-Speed Rolling

2011-04-12
2011-01-0101
The Michelin Tweel tire structure has recently been developed as an innovative non-pneumatic tire which has potential for improved handling, grip, comfort, low energy loss when impacting obstacles and reduced rolling resistance when compared to a traditional pneumatic tire. One of the potential sources of vibration during rolling of a non-pneumatic tire is the buckling phenomenon and snapping back of the spokes in tension when they enter and exit the contact zone. Another source of noise was hypothesized due to a flower petal ring vibration effect due to discrete spoke interaction with the ring and contact with the ground during rolling as the spokes cycle between tension and compression. Transmission of vibration between the ground force, ring and spokes to the hub was also considered to be a significant contributor to vibration and noise characteristics of the Tweel.
Journal Article

Fuzzy Logic Approach to Vehicle Stability Control of Oversteer

2011-04-12
2011-01-0268
Traditional Electronic Stability Control (ESC) for automobiles is usually accomplished through the use of estimated vehicle dynamics from simplified models that rely on parameters such as cornering stiffness that can change with the vehicle state and time. This paper proposes a different method for electronic stability control of oversteer by predicting the degree of instability in a vehicle. The algorithm is solely based on measurable response characteristics including lateral acceleration, yaw rate, speed, and driver steering input. These signals are appropriately conditioned and evaluated with fuzzy logic to determine the degree of instability present. When the “degree of instability” passes a certain threshold, the appropriate control action is applied to the vehicle in the form of differential yaw braking. Using only the measured response of the vehicle alleviates the problem of degraded performance when vehicle parameters change.
Technical Paper

Experimental Investigation of Low Cost, Low Thermal Conductivity Thermal Barrier Coating on HCCI Combustion, Efficiency, and Emissions

2020-04-14
2020-01-1140
In-cylinder surface temperature is of heightened importance for Homogeneous Charge Compression Ignition (HCCI) combustion since the combustion mechanism is thermo-kinetically driven. Thermal Barrier Coatings (TBCs) selectively manipulate the in-cylinder surface temperature, providing an avenue for improving thermal and combustion efficiency. A surface temperature swing during combustion/expansion reduces heat transfer losses, leading to more complete combustion and reduced emissions. At the same time, achieving a highly dynamic response sidesteps preheating of charge during intake and eliminates the volumetric efficiency penalty. The magnitude and temporal profile of the dynamic surface temperature swing is affected by the TBC material properties, thickness, morphology, engine speed, and heat flux from the combustion process. This study follows prior work of authors with Yttria Stabilized Zirconia, which systematically engineered coatings for HCCI combustion.
Technical Paper

Wear Resistance of Lunar Wheel Treads Made of Polymeric Fabrics

2009-04-20
2009-01-0065
The purpose of this research is to characterize the wear resistance of wheel treads made of polymeric woven and non-woven fabrics. Experimental research is used to characterize two wear mechanisms: (1) external wear due to large sliding between the tread and rocks, and (2) external wear due to small sliding between the tread and abrasive sand. Experimental setups include an abrasion tester and a small-scale merry-go-round where the tread is attached to a deformable rolling wheel. The wear resistance is characterized using various measures including, quantitatively, by the number of cycles to failure, and qualitatively, by micro-visual inspection of the fibers’ surface. This paper describes the issues related to each experiment and discusses the results obtained with different polymeric materials, fabric densities and sizes. The predominant wear mechanism is identified and should then be used as one of the criteria for further design of the tread.
Technical Paper

Design of a Scaled Off-Vehicle Wheel Testing Device for Textile Tread Wear

2009-04-20
2009-01-0562
This paper describes the development of test equipment for determining the wear viability of various lunar wheel tread materials with service lives of up to ten years and 10,000 km. The problem is defined, and concepts are proposed, evaluated, and selected. An abrasive turntable is chosen for simplicity and accuracy of modeling the original wheel configuration. Additionally, the limitations of the test are identified, such as the sensitivity to off-vertical loading, and future work is projected in order to more effectively continue testing. Finally, this paper presents the challenges of collaborative research effort between an undergraduate research team and industry, with government lab representatives as customers
Technical Paper

Bonding Strength Modeling of Polyurethane to Vulcanized Rubber

2009-04-20
2009-01-0605
Tires manufactured from polyurethane (PU) have been espoused recently for reduced hysteretic loss, but the material provides poor traction or poor wear resistance in the application, requiring inclusion of a traditional vulcanized rubber tread at the contact surface. The tread can be attached by adhesive methods after the PU body is cured, or the PU can be directly cured to reception sites on the rubber chain molecules unoccupied by crosslinked (vulcanizing) sulfur atoms. This paper provides a study of the two bonding options, both as-manufactured and after dynamic loading representative of tire performance in service. Models of each process are introduced, and an experimental comparison of the bonding strength between each method is made. Results are applied to tire fatigue simulation.
Technical Paper

Independent Torque Distribution Strategies for Vehicle Stability Control

2009-04-20
2009-01-0456
This paper proposes and compares torque distribution management strategies for vehicle stability control (VSC) of vehicles with independently driven wheels. For each strategy, the following feedback control variables are considered turn by turn: 1) yaw rate 2) lateral acceleration 3) both yaw rate and lateral acceleration. Computer simulation studies are conducted on the effects of road friction conditions, feedback controller gains, and a driver emulating speed controller. The simulation results indicated that all VSC torque management strategies are generally very effective in tracking the reference yaw rate and lateral acceleration of the vehicle on both dry and slippery surface conditions. Under the VSC strategies employed and the test conditions considered, the sideslip angle of the vehicle remained very small and always below the desired or target values.
Technical Paper

Development of Endurance Testing Apparatus Simulating Wheel Dynamics and Environment on Lunar Terrain

2010-04-12
2010-01-0765
This paper entails the design and development of a NASA testing system used to simulate wheel operation in a lunar environment under different loading conditions. The test system was developed to test the design of advanced nonpneumatic wheels to be used on the NASA All-Terrain Hex-Legged Extra-Terrestrial Explorer (ATHLETE). The ATHLETE, allowing for easy maneuverability around the lunar surface, provides the capability for many research and exploration opportunities on the lunar surface that were not previously possible. Each leg, having six degrees of freedom, allows the ATHLETE to accomplish many tasks not available on other extra-terrestrial exploration platforms. The robotic vehicle is expected to last longer than previous lunar rovers.
Technical Paper

Design of an Open-Loop Steering Robot Profile for Double Lane Change Maneuver Using Simulation

2010-04-12
2010-01-0096
This paper presents a methodology for designing a simple open-loop steering robot profile to simulate a double lane change maneuver for track testing of a heavy tractor/trailer combination vehicle. For track testing of vehicles in a lane change type of maneuver, a human driver is typically used with a desired path defined with visual cues such as traffic cones. Such tests have been shown to result in poor test repeatability due to natural variation in driver steering behavior. While a steering robot may be used to overcome this repeatability issue, such a robot typically implements open-loop maneuvers and cannot be guaranteed to cause the vehicle to accurately follow a pre-determined trajectory. This paper presents a method using offline simulation to design an open-loop steering maneuver resulting in a realistic approximation of a double lane change maneuver.
Technical Paper

Testing a Formula SAE Racecar on a Seven-Poster Vehicle Dynamics Simulator

2002-12-02
2002-01-3309
Vehicle dynamics simulation is one of the newest and most valuable technologies being applied in the racing world today. Professional designers and race teams are investing heavily to test and improve the dynamics of their suspension systems through this new technology. This paper discusses the testing of one of Clemson University's most recent Formula SAE racecars on a seven-poster vehicle dynamics simulator; commonly known as a “shaker rig.” Testing of the current dampers using a shock dynamometer was conducted prior to testing and results are included for further support of conclusions. The body of the paper is a discussion of the setup and testing procedures involved with the dynamic simulator. The results obtained from the dynamic simulator tests are then analyzed in conjunction with the shock dynamometer results. Conclusions are formed from test results and methods for future improvements to be applied in Formula SAE racing are suggested.
Technical Paper

Fidelity of Vehicle Models Using Roll Center Principles

2000-03-06
2000-01-0693
The ‘roll center’ concept has existed in vehicle dynamics for decades. However, its application is not commonly well understood. This paper considers roll center concepts in the modeling of a planar (front view) twin-beam suspension. Two roll center models are developed and compared to a third model, developed from the Lagrangian method without reference to a roll center. In addition to discussion of the equations of motion, analysis includes simulation of a ‘cornering’ maneuver. The effects of tire vertical stiffness, jacking forces, and nonlinear kinematics are investigated. Conclusions are drawn regarding the usefulness and accuracy of the roll center modeling.
Technical Paper

Use of Cellphones as Alternative Driver Inputs in Passenger Vehicles

2019-04-02
2019-01-1239
Automotive drive-by-wire systems have enabled greater mobility options for individuals with physical disabilities. To further expand the driving paradigm, a need exists to consider an alternative vehicle steering mechanism to meet specific needs and constraints. In this study, a cellphone steering controller was investigated using a fixed-base driving simulator. The cellphone incorporated the direction control of the vehicle through roll motion, as well as the brake and throttle functionality through pitch motion, a design that can assist disabled drivers by excluding extensive arm and leg movements. Human test subjects evaluated the cellphone with conventional vehicle control strategy through a series of roadway maneuvers. Specifically, two distinctive driving situations were studied: a) obstacle avoidance test, and b) city road traveling test. A conventional steering wheel with self-centering force feedback tuning was used for all the driving events for comparison.
Technical Paper

Combined Synchrotron X-Ray Diffraction and Digital Image Correlation Technique for Measurement of Austenite Transformation with Strain in TRIP-Assisted Steels

2016-04-05
2016-01-0419
The strain-induced diffusionless shear transformation of retained austenite to martensite during straining of transformation induced plasticity (TRIP) assisted steels increases strain hardening and delays necking and fracture leading to exceptional ductility and strength, which are attractive for automotive applications. A novel technique that provides the retained austenite volume fraction variation with strain with improved precision is presented. Digital images of the gauge section of tensile specimens were first recorded up to selected plastic strains with a stereo digital image correlation (DIC) system. The austenite volume fraction was measured by synchrotron X-ray diffraction from small squares cut from the gage section. Strain fields in the squares were then computed by localizing the strain measurement to the corresponding region of a given square during DIC post-processing of the images recorded during tensile testing.
Journal Article

High Strain Rate Tensile Behavior of 1180MPa Grade Advanced High Strength Steels

2020-04-14
2020-01-0754
Tensile behavior of advanced high strength steel (AHSS) grades with strengths up to 980 MPa has been extensively studied. However, limited data is found in literature on the tensile behavior of steels with tensile strengths of the order of 1180 MPa, especially at nominal strain rates up to 500/s. This paper examines tensile flow behavior to fracture of four different 1180 MPa grade steels at strain rates of 0.005/s, 0.5/s, 5/s, 50/s and 500/s using an experimental methodology that combines a servo-hydraulic tester and high speed digital image correlation. Even though the strength increase with the strain rate is consistent between the four different materials, the total elongation increase with the strain rate varies widely. Some insights as to why this occurs from examination of the steel microstructure and variation of retained austenite with strain are offered.
Journal Article

Integration of Autonomous Vehicle Frameworks for Software-in-the-Loop Testing

2020-04-14
2020-01-0709
This paper presents an approach for performing software in the loop testing of autonomous vehicle software developed in the Autoware framework. Autoware is an open source software for autonomous driving that includes modules such as localization, detection, prediction, planning and control [8]. Multitudes of autonomous driving frameworks exist today, each having its own pros and cons. Often, MATLAB-Simulink is used for rapid prototyping, system modeling and testing, specifically for the lower-level vehicle dynamics and powertrain control features. For the autonomous software, the Robotic Operating System (ROS) is more commonly used for integrating distributed software components so that they can easily share information through a publish and subscribe paradigm. Thorough testing and evaluation of such complex, distributed software, implemented on a physical vehicle poses significant challenges in terms of safety, time, and cost, especially when considering rare edge cases.
Journal Article

Strain Rate Effect on Martensitic Transformation in a TRIP Steel Containing Carbide-Free Bainite

2019-04-02
2019-01-0521
Adiabatic heating during plastic straining can slow the diffusionless shear transformation of austenite to martensite in steels that exhibit transformation induced plasticity (TRIP). However, the extent to which the transformation is affected over a strain rate range of relevance to automotive stamping and vehicle impact events is unclear for most third-generation advanced high strength TRIP steels. In this study, an 1180MPa minimum tensile strength TRIP steel with carbide-free bainite is evaluated by measuring the variation of retained austenite volume fraction (RAVF) in fractured tensile specimens with position and strain. This requires a combination of servo-hydraulic load frame instrumented with high speed stereo digital image correlation for measurement of strains and ex-situ synchrotron x-ray diffraction for determination of RAVF in fractured tensile specimens.
Technical Paper

Impact of Thermal Barrier Coatings on Intake and Exhaust Valves in a Spark Ignition Engine

2023-04-11
2023-01-0243
Spark ignition knock is highly sensitive to changes in intake air temperature. Hot surface temperatures due to ceramic thermal barrier coatings increase knock propensity by elevating the incoming air temperature, thus mitigating the positive impacts of low heat transfer losses by requiring spark retard to avoid knock. Low thermal inertia coatings (i.e. Temperature swing coatings) have been proposed as a means of reducing or eliminating the open cycle charge heating penalty of traditional TBCs through a combination of low thermal conductivity and low volumetric heat capacity materials. However, in order to achieve a meaningful gain in efficiency, a significant fraction of the combustion chamber must be coated. In this study, a coated piston and intake and exhaust valves with coated combustion faces, backsides, and stems are installed in a single-cylinder research engine to evaluate the effect of high coated fractions of the combustion chamber in a knock-sensitive architecture.
Technical Paper

Computational Method to Examine Spoke Dynamics in a High Speed Rolling Wheel

2009-04-20
2009-01-0071
This paper describes a computational approach to investigating spoke vibrations in cast polyurethane spoked wheels during high-speed rolling. It focuses on four aspects: 1) Creating a two-dimensional finite element model of a cast polyurethane rolling wheel which is in contact with a rigid plane to observe the spoke vibrations. 2) Investigating the effect of rolling speed on the observed spoke vibrations. 3) Investigating the effect of spoke thickness on spoke vibration frequencies. 4) Creating a three-dimensional spoke model to investigate spoke vibrations which exhibit both symmetric and anti-symmetric out-of-plane modes.
Technical Paper

Data Driven Vehicle Dynamics System Identification Using Gaussian Processes

2024-04-09
2024-01-2022
Modeling uncertainties pose a significant challenge in the development and deployment of model-based vehicle control systems. Most model- based automotive control systems require the use of a well estimated vehicle dynamics prediction model. The ability of first principles-based models to represent vehicle behavior becomes limited under complex scenarios due to underlying rigid physical assumptions. Additionally, the increasing complexity of these models to meet ever-increasing fidelity requirements presents challenges for obtaining analytical solutions as well as control design. Alternatively, deterministic data driven techniques including but not limited to deep neural networks, polynomial regression, Sparse Identification of Nonlinear Dynamics (SINDy) have been deployed for vehicle dynamics system identification and prediction.
X