Refine Your Search

Topic

Author

Search Results

Journal Article

CFD-based Modelling of Flow Conditions Capable of Inducing Hood Flutter

2010-04-12
2010-01-1011
This paper presents a methodology for simulating Fluid Structure Interaction (FSI) for a typical vehicle bonnet (hood) under a range of onset flow conditions. The hood was chosen for this study, as it is one of the panels most prone to vibration; particularly given the trend to make vehicle panels lighter. Among the worst-case scenarios for inducing vibration is a panel being subjected to turbulent flow from vehicle wakes, and the sudden peak loads caused by emerging from a vehicle wake. This last case is typical of a passing manoeuvre, with the vehicle suddenly transitioning from being immersed in the wake of the leading vehicle, to being fully exposed to the free-stream flow. The transient flowfield was simulated for a range of onset flow conditions that could potentially be experienced on the open road, which may cause substantial vibration of susceptible vehicle panels.
Journal Article

Alternative Simulation Methods for Assessing Aerodynamic Drag in Realistic Crosswind

2014-04-01
2014-01-0599
The focus of evaluating yaw characteristics in automotive aerodynamics has been primarily with regards to the effects of crosswind on vehicle handling. However, changes to drag that the vehicle experiences due to prevalent on-road crosswind can also be significant, even at low yaw angles. Using wind tunnel testing, it is possible to quickly determine the static yaw performance of the vehicle by rotating the vehicle on a turntable to different yaw angles during a single wind tunnel run. However, this kind of testing does not account for dynamic crosswind effects or non-uniform crosswind such as with natural on-road turbulence. Alternatively, numerical simulations using computational fluid dynamics (CFD) can be used to evaluate yaw performance. In this paper, Exa's PowerFLOW is used to examine two alternative methods of simulating aerodynamic performance in the presence of realistic on-road crosswind for the Tesla Model S sedan.
Journal Article

Evaluation of Non-Uniform Upstream Flow Effects on Vehicle Aerodynamics

2014-04-01
2014-01-0614
Historically vehicle aerodynamic development has focused on testing under idealised conditions; maintaining measurement repeatability and precision in the assessment of design changes. However, the on-road environment is far from ideal: natural wind is unsteady, roadside obstacles provide additional flow disturbance, as does the presence of other vehicles. On-road measurements indicate that turbulence with amplitudes up to 10% of vehicle speed and dominant length scales spanning typical vehicle sizes (1-10 m) occurs frequently. These non-uniform flow conditions may change vehicle aerodynamic behaviour by interfering with separated turbulent flow structures and increasing local turbulence levels. Incremental improvements made to drag and lift during vehicle development may also be affected by this non-ideal flow environment. On-road measurements show that the shape of the observed turbulence spectrum can be generalised, enabling the definition of representative wind conditions.
Journal Article

Eulerian CFD Modeling of Coupled Nozzle Flow and Spray with Validation Against X-Ray Radiography Data

2014-04-01
2014-01-1425
This paper implements a coupled approach to integrate the internal nozzle flow and the ensuing fuel spray using a Volume-of-Fluid (VOF) method in the CONVERGE CFD software. A VOF method was used to model the internal nozzle two-phase flow with a cavitation description closed by the homogeneous relaxation model of Bilicki and Kestin [1]. An Eulerian single velocity field approach by Vallet et al. [2] was implemented for near-nozzle spray modeling. This Eulerian approach considers the liquid and gas phases as a complex mixture with a highly variable density to describe near nozzle dense sprays. The mean density is obtained from the Favreaveraged liquid mass fraction. The liquid mass fraction is transported with a model for the turbulent liquid diffusion flux into the gas.
Technical Paper

Utilization of Vehicle Connectivity for Improved Energy Consumption of a Speed Harmonized Cohort of Vehicles

2020-04-14
2020-01-0587
Improving vehicle response through advanced knowledge of traffic behavior can lead to large improvements in energy consumption for the single isolated vehicle. This energy savings across multiple vehicles can even be larger if they travel together as a cohort in harmonization. Additionally, if the vehicles have enough information about their immediate path of travel, and other vehicles’ in that path (and their respective critical forward-looking information), they can safely drive close enough to each other to share aerodynamic load. These energy savings can be upwards of multiple percentage points, and are dependent on several criteria. This analysis looks at criteria that contributes to energy savings for a cohort of vehicles in synchronous motion, as well as describes a study that allows for better understanding of the potential benefits of different types of cohorted vehicles in different platoon arrangements.
Technical Paper

Further CFD Studies for Detailed Tires using Aerodynamics Simulation with Rolling Road Conditions

2010-04-12
2010-01-0756
In an environment of tougher engineering constraints to deliver tomorrow's aerodynamic vehicles, evaluation of aerodynamics early in the design process using digital prototypes and simulation tools has become more crucial for meeting cost and performance targets. Engineering needs have increased the demands on simulation software to provide robust solutions under a range of operating conditions and with detailed geometry representation. In this paper the application of simulation tools to wheel design in on-road operating conditions is explored. Typically, wheel and wheel cover design is investigated using physical tests very late in the development process, and requires costly testing of many sets of wheels in an on-road testing environment (either coast-down testing or a moving-ground wind-tunnel).
Technical Paper

CFD Approach to Evaluate Wind-Tunnel and Model Setup Effects on Aerodynamic Drag and Lift for Detailed Vehicles

2010-04-12
2010-01-0760
Previous work by the authors showed the development of an aerodynamic CFD model using the Lattice Boltzmann Method for simulating vehicles inside the IVK Model-Scale Wind-Tunnel test-section. In both experiment and simulation, alternate configurations of the wind-tunnel geometry were studied to change the pressure distribution in the wind-tunnel test section, inducing a reduction in aerodynamic drag due to interference between the wind-tunnel geometry and the pressure on the surface of the vehicle. The wind-tunnel pressure distribution was modified by adding so-called “stagnation bodies” inside the collector to create blockage and to increase the pressure in the rear portion of the test section. The primary purpose of previous work was to provide a validated CFD approach for modeling wind-tunnel interference effects, so that these effects can be understood and accounted for when designing vehicles.
Technical Paper

Determination of Vehicle Resistance Curve in Engine Cooling System Design

2010-04-12
2010-01-0933
A process to create a vehicle resistance curve based on airflow predictions using Computational Fluid Dynamics (CFD) simulation technique is presented. 1-dimensional engine cooling system simulation tool KULI is used to compute the coefficients of vehicle resistance curve. A full factorial Design of Experiment (DOE) established the relationship between the coefficients and the sum of absolute difference between KULI and CFD predictions. The NLPQL optimization routine is used to accurately predict the coefficients so that sum of absolute difference between KULI and CFD predictions is minimized.
Technical Paper

Comparing Single-Step and Multi-Step Chemistry Using The Laminar and Turbulent Characteristic Time Combustion Model In Two Diesel Engines

2002-05-06
2002-01-1749
Three-dimensional diesel engine combustion simulations with single-step chemistry have been compared with two-step and three-step chemistry by means of the Laminar and Turbulent Characteristic Time Combustion model using the Star-CD program. The second reaction describes the oxidation of CO and the third reaction describes the combustion of H2. The comparisons have been performed for two heavy-duty diesel engines. The two-step chemistry was investigated for a purely kinetically controlled, for a mixing limited and for a combination of kinetically and mixing limited oxidation. For the latter case, two different descriptions of the laminar reaction rates were also tested. The best agreement with the experimental cylinder pressure has been achieved with the three-step mechanism but the differences with respect to the two-step and single-step reactions were small.
Technical Paper

Relating Integral Length Scale to Turbulent Time Scale and Comparing k-ε and RNG k-ε Turbulence Models in Diesel Combustion Simulation

2002-03-04
2002-01-1117
A modified version of the Laminar and Turbulent Characteristic Time combustion model and the Hiroyasu-Magnussen soot model have been implemented in the flow solver Star-CD. Combustion simulations of three DI diesel engines, utilizing the standard k-ε turbulence model and a modified version of the RNG k-ε turbulence model, have been performed and evaluated with respect to combustion performance and emissions. Adjustments of the turbulent characteristic combustion time coefficient, which were necessary to match the experimental cylinder peak pressures of the different engines, have been justified in terms of non-equilibrium turbulence considerations. The results confirm the existence of a correlation between the integral length scale and the turbulent time scale. This correlation can be used to predict the combustion time scale in different engines.
Technical Paper

Modeling Ignition and Premixed Combustion Including Flame Stretch Effects

2017-03-28
2017-01-0553
Objective of this work is the incorporation of the flame stretch effects in an Eulerian-Lagrangian model for premixed SI combustion in order to describe ignition and flame propagation under highly inhomogeneous flow conditions. To this end, effects of energy transfer from electrical circuit and turbulent flame propagation were fully decoupled. The first ones are taken into account by Lagrangian particles whose main purpose is to generate an initial burned field in the computational domain. Turbulent flame development is instead considered only in the Eulerian gas phase for a better description of the local flow effects. To improve the model predictive capabilities, flame stretch effects were introduced in the turbulent combustion model by using formulations coming from the asymptotic theory and recently verified by means of DNS studies. Experiments carried out at Michigan Tech University in a pressurized, constant-volume vessel were used to validate the proposed approach.
Technical Paper

An Experimental Study on the Interaction between Flow and Spark Plug Orientation on Ignition Energy and Duration for Different Electrode Designs

2017-03-28
2017-01-0672
The effect of flow direction towards the spark plug electrodes on ignition parameters is analyzed using an innovative spark aerodynamics fixture that enables adjustment of the spark plug gap orientation and plug axis tilt angle with respect to the incoming flow. The ignition was supplied by a long discharge high energy 110 mJ coil. The flow was supplied by compressed air and the spark was discharged into the flow at varying positions relative to the flow. The secondary ignition voltage and current were measured using a high speed (10MHz) data acquisition system, and the ignition-related metrics were calculated accordingly. Six different electrode designs were tested. These designs feature different positions of the electrode gap with respect to the flow and different shapes of the ground electrodes. The resulting ignition metrics were compared with respect to the spark plug ground strap orientation and plug axis tilt angle about the flow direction.
Technical Paper

An Innovative Approach Combining Adaptive Mesh Refinement, the ECFM3Z Turbulent Combustion Model, and the TKI Tabulated Auto-Ignition Model for Diesel Engine CFD Simulations

2016-04-05
2016-01-0604
The 3-Zones Extended Coherent Flame Model (ECFM3Z) and the Tabulated Kinetics for Ignition (TKI) auto-ignition model are widely used for RANS simulations of reactive flows in Diesel engines. ECFM3Z accounts for the turbulent mixing between one zone that contains compressed air and EGR and another zone that contains evaporated fuel. These zones mix to form a reactive zone where combustion occurs. In this mixing zone TKI is applied to predict the auto-ignition event, including the ignition delay time and the heat release rate. Because it is tabulated, TKI can model complex fuels over a wide range of engine thermodynamic conditions. However, the ECFM3Z/TKI combustion modeling approach requires an efficient predictive spray injection calculation. In a Diesel direct injection engine, the turbulent mixing and spray atomization are mainly driven by the liquid/gas coupling phenomenon that occurs at moving liquid/gas interfaces.
Technical Paper

CFD Analysis of Various Automotive Bodies in Linear Static Pressure Gradients

2012-04-16
2012-01-0298
Establishing data adjustments that will give an interference free result for bluff bodies in automotive wind tunnels has been pursued for at least the last 45 years. Recently, the Two-Measurement correction method that yields a wake distortion adjustment for open jet wind tunnels has shown promise of being able to adjust for many of the effects of non-ideal static pressure gradients on bluff automotive bodies. Utilization of this adjustment has shown that a consistent drag results when the vehicle is subjected to the various gradients generated in open jet wind tunnels. What has been lacking is whether this consistent result is independent of the other tunnel interference effects. The studies presented here are intended to fill that gap on the performance of the two-measurement technique. The subject CFD studies are designed to eliminate all wind tunnel interference effects except for the variation of the (linear) static pressure gradient.
Technical Paper

Investigation of Diesel Liquid Spray Penetration Fluctuations under Vaporizing Conditions

2012-04-16
2012-01-0455
Diesel combustion and emissions formation is largely spray and mixing controlled and hence understanding spray parameters, specifically vaporization, is key to determine the impact of fuel injector operation and nozzle design on combustion and emissions. In this study, an eight-hole common rail piezoelectric injector was tested in an optically accessible constant volume combustion vessel at charge gas conditions typical of full load boosted engine operation. Liquid penetration of the eight sprays was determined via processing of images acquired from Mie back scattering under vaporizing conditions by injecting into a charge gas at elevated temperature with 0% oxygen. Conditions investigated included a charge temperature sweep of 800 to 1300 K and injection pressure sweep of 1034 to 2000 bar at a constant charge density of 34.8 kg/m₃.
Technical Paper

Blend Ratio Optimization of Fuels Containing Gasoline Blendstock, Ethanol, and Higher Alcohols (C3-C6): Part II - Blend Properties and Target Value Sensitivity

2013-04-08
2013-01-1126
Higher carbon number alcohols offer an opportunity to meet the Renewable Fuel Standard (RFS2) and improve the energy content, petroleum displacement, and/or knock resistance of gasoline-alcohol blends from traditional ethanol blends such as E10 while maintaining desired and regulated fuel properties. Part II of this paper builds upon the alcohol selection, fuel implementation scenarios, criteria target values, and property prediction methodologies detailed in Part I. For each scenario, optimization schemes include maximizing energy content, knock resistance, or petroleum displacement. Optimum blend composition is very sensitive to energy content, knock resistance, vapor pressure, and oxygen content criteria target values. Iso-propanol is favored in both scenarios' suitable blends because of its high RON value.
Technical Paper

Blend Ratio Optimization of Fuels Containing Gasoline Blendstock, Ethanol, and Higher Alcohols (C3-C6): Part I - Methodology and Scenario Definition

2013-04-08
2013-01-1144
The U.S. Renewable Fuel Standard (RFS2) requires an increase in the use of advanced biofuels up to 36 billion gallons by 2022. Longer chain alcohols, in addition to cellulosic ethanol and synthetic biofuels, could be used to meet this demand while adhering to the RFS2 corn-based ethanol limitation. Higher carbon number alcohols can be utilized to improve the energy content, knock resistance, and/or petroleum displacement of gasoline-alcohol blends compared to traditional ethanol blends such as E10 while maintaining desired and regulated fuel properties. Part I of this paper focuses on the development of scenarios by which to compare higher alcohol fuel blends to traditional ethanol blends. It also details the implementation of fuel property prediction methods adapted from literature. Possible combinations of eight alcohols mixed with a gasoline blendstock were calculated and the properties of the theoretical fuel blends were predicted.
Technical Paper

Shape Recovery Simulation of Flexible Airdam

2013-04-08
2013-01-0166
Airdam is an aerodynamic component in automobile and is designed to reduce the drag and increase fuel efficiency. It is also an important styling component. The front airdam below the bumper is to direct the air flow away from the front tires and towards the underbody, where the drag coefficient becomes less. The flexible airdam is made of Santoprene™ - thermoplastic vulcanizates (TPV), which belongs to thermoplastic elastomer (TPE) family. When a vehicle is parked over a parking block, the flexible airdam will be under strain subjected to bending load from the parking block. If the airdam is kept under constant strain for a certain period, a set will occur and the force will decay over a period of time. Due to the force decay, the stress will reduce and this behavior is called as stress relaxation.
Technical Paper

Determination of Vehicle Frontal Area Using Image Processing

2013-04-08
2013-01-0203
The projected frontal area of a vehicle has a significant impact on aerodynamic drag, and thus is an important parameter, for vehicle development, benchmarking, and modeling. However, determining vehicle frontal area can be tedious, time consuming, expensive, or inaccurate. Existing methods include analysis of engineering drawings, vehicle projections, 3D scanners, planimeter measurements from photographs, and estimations using vehicle dimensions. Currently accepted approximation methods can be somewhat unreliable. This study focuses on introducing a method to find vehicle frontal area using digital images and subtraction functions via MATLABs' Image Processing Toolbox. In addition to an overview of the method, this paper describes several variables that were examined to optimize and improve the process such as camera position, surface glare, and vehicle shadow effects.
Technical Paper

Ramifications of Test Track Curves On Aerodynamic Prediction for Tractor Trailer Vehicles

2013-09-24
2013-01-2460
Comparison of computation fluid dynamics (CFD) analysis of physical testing on curved test tracks highlights that simplifications in both methods can lead to significant error in predicting real world fuel economy performance for heavy duty tractor/trailer vehicles. The importance of understanding the differences in and the accuracy of these test methods have increased recently due to North American greenhouse gas (GHG) regulations and similar developments in other regions requiring manufacturers to assess aerodynamic performance of nearly every tractor sold. This paper discusses lessons learned in enhancing the accuracy of CFD and track predictions of real world aero performance by quantifying the effects of test track curves and challenging simplifying assumptions.
X