Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Three-Way-Catalyst Modeling - A Comparison of 1D and 2D Simulations

2007-04-16
2007-01-1071
In this paper we present a comparison of two different approaches to model three-way catalyst. First, a numerical sample case simulating light-off is used to compare the 1D and the 2D models. The advantages of each code are discussed with respect to required input data, detail level of the output, comparability, and computation time. Thus, the 2D model reveals significant radial temperature gradients inside the monolith during light-off. In a second step, the 2D model is compared with experimental data. One set of data consists of an air/fuel ratio varying sweep at isothermal conditions. Another set was gained by emission measurements during a real driving MVEG tests with varying substrate cell density & inlet conditions. From these experiments the applicability of the model to numerical parameter studies is discussed.
Technical Paper

Performance of Different Cell Structure Converters A Total Systems Perspective

1998-10-19
982634
The objective of this effort was to develop an understanding of how different converter substrate cell structures impact tailpipe emissions and pressure drop from a total systems perspective. The cell structures studied were the following: The catalyst technologies utilized were a new technology palladium only catalyst in combination with a palladium/rhodium catalyst. A 4.0-liter, 1997 Jeep Cherokee with a modified calibration was chosen as the test platform for performing the FTP test. The experimental design focused on quantifying emissions performance as a function of converter volume for the different cell structures. The results from this study demonstrate that the 93 square cell/cm2 structure has superior performance versus the 62 square cell/cm2 structure and the 46 triangle cell/cm2 structure when the converter volumes were relatively small. However, as converter volume increases the emissions differences diminish.
Technical Paper

Impacts of B20 Biodiesel on Cordierite Diesel Particulate Filter Performance

2009-11-02
2009-01-2736
Engine laboratory tests were conducted to assess the impact of B20 biodiesel on the performance of cordierite diesel particulate filters (DPFs). Test fuels included 20% soy based methyl ester blended into ultra low sulfur diesel fuel, and two ULSD on-road market fuels. B20 has a higher cetane number, boiling point and oxygen content than typical on-road diesel fuels. A comparative study was performed using a model year 2007 medium duty diesel truck engine. The aftertreatment system included a diesel oxidation catalyst (DOC) followed by a cordierite wall flow DPF. A laboratory-grade supplemental fuel doser was used in the exhaust stream for precise regeneration of the DPF. Tests revealed that the fuel dosing rate was higher and DOC fuel conversion efficiency was poorer for the B20 fuel during low exhaust temperature regenerations. The slip of B20 fuel past the DOC was shown to produce significantly higher exotherms in the DPF during regeneration.
Technical Paper

Principles for the Design of Diesel Oxidation Catalysts

2002-05-06
2002-01-1723
The diesel oxidation catalyst is required to remove hydrocarbons and carbon monoxide from the diesel engine exhaust stream while minimizing the impact of all other features such as cost, space, pressure drop, weight, fuel consumption, etc. The challenge of designing a catalytic converter for a particular application then becomes to: first, understand the emissions and other performance targets and requirements for the engine; second, understand the influence each of the converter parameters has on the overall system performance and; third, optimize the system using these relationships. This paper will explore some of the considerations with respect to the second of the above challenges.
Technical Paper

Sub-23nm Particle Emissions from China6 Gasoline Vehicles over Various Driving Cycles

2023-04-11
2023-01-0395
Sub-23nm particles emission from the light-duty vehicle is widely discussed now and possible to be counted into the next stage emission legislation, such as Euro7. In this article, 16 China6 gasoline vehicles were tested over the WLTC and two surrogate RDE lab cycles for particulate number (PN) emission, the difference between PN23 (particle size >23nm) and PN10 (particle size>10nm) emission was analyzed. Testing results showed that the average PN10 emission increased 59% compared to PN23, which will bring great challenges for those vehicles to meet the future regulation requirement if sub-23nm particle is counted. The sub-23nm particles emission was proportional to the PN23 particles emission and generated mostly from the cold start or the transient engine conditions with rich combustion. Compared to the proposal of Euro 7, PN10 emission from some tested vehicles will need further two orders of magnitude reduction.
Technical Paper

GPF: An Effective Technology to Minimize Two Wheeler (2Wh) Particulate Emission

2024-01-16
2024-26-0140
India is the world’s largest two-wheeler (2Wh) market. With the proportion of its middle class rapidly rising, 2Wh sales and the resulting emissions, are expected to grow exponentially. The decision to leap-frog from BSIV to BSVI emission norms shows India’s commitment to clean up its atmosphere. As of now, the regulation mandates Gaseous Pollutant (CO, HC, NOx) emission limits for all 2Whs and a particulate limit (PM & PN) for 2Whs powered by Direct Injection (DI) engines. Most of the 2Whs manufactured in India are powered by gasoline engines using the Port Fuel Injection (PFI) technology, and hence by definition particulate emission limits do not apply to them. Particulates when inhaled - especially of the ultrafine sizes capable of entering the blood stream - pose a serious health risk. This was the primary motivation to investigate the particulate emission levels of the 2Whs, which as on date, do not come under the purview of BSVI regulation.
Technical Paper

Validation Test on a Light Duty Vehicle Equipped with a GDI Engine to Meet China 6b RDE Regulation for PN

2022-08-30
2022-01-1020
China 6 (CN6) emission legislation for light duty vehicles was published in 2016, which introduced real driving emissions (RDE) requirements for new type-approval content. Nitrogen oxides (NOx) and particle number (PN) of RDE test are required to be monitored and reported from July 2020 in CN6a phase, fulfilled from July 2023 in CN6b phase. To meet the PN limitation of CN6 RDE, the optimized engine combustion and advanced emission control system like gasoline particle filter (GPF) are encouraged. Compared to traditional vehicle platform emission compliance which could be done in lab, much more vehicle development and validation efforts are expected on the open road for RDE compliance. High cost and complexity are expected to conduct a complete validation test matrix covering all the RDE critical boundary conditions on the open road.
X