Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Emission Reduction Technologies Applied to High-Speed Direct Injection Diesel Engine

1998-02-01
980173
In this paper, emissions reduction technologies applied to high-speed direct injection (HSDI) diesel passenger car engines to meet the stricter exhaust emission legislation are described. To reduce smoke, the F.I.E. has been improved by using a radial-piston distributor pump which delivers fuel-injection-pressure up to 120MPa. Cooled exhaust gas re-circulation (EGR) system and increase in volume ratio of the combustion chamber has made it possible to increase EGR ratio and reduced nitrogen oxides (NOx) and smoke simultaneously. Furthermore, improvements in the oxidation catalyst activating temperature reduces PM at lower exhaust gas temperatures. As a result of applying these technologies, a clean and economical HSDI diesel engine for passenger cars, which complies with Japanese '98 exhaust emissions legislation and has better fuel economy than indirect injection (IDI) diesel engines (above 15%), has been developed.
Technical Paper

New DOC for Light Duty Diesel DPF System

2007-07-23
2007-01-1920
A new state of the art DOC (Diesel Oxidation Catalyst) having superior light-off and exothermic activity for forced regeneration compared to conventional Pt base passive DOC, was investigated for LDD application. The DOC uses the latest Pt/Pd technology resulting cost effective DPF system. The newly developed DOC demonstrated improved catalytic activities from Pt only DOC in model gas or engine bench tests. In this study, DOC at early development stage showed excellent light-off activity in model gas and engine bench test compared to conventional Pt only DOC, however, it showed “extinction” phenomenon which is one of the deactivation mode while the post injection and it was observed when post injection operation was done at lower DOC inlet temperatures, e.g. below 250 C. Temperature profiles along diameter and length into DOC bed while active regeneration suggested extinction would be caused by fouling of supplied hydrocarbons derived from diesel fuel.
Technical Paper

A Study of Transmission fluid Performance on Fuel Economy

2007-07-23
2007-01-1980
To apply a fuel economy performance to AT&CVT fluid for common use (hereinafter AT/CVT fluid) and manual transmission fluid, by optimizing fluid viscosity, a fundamental study was investigated. Generally, it is well known that the viscosity of polymer-added transmission fluids is gradually reduced, due to deterioration of the viscosity index improver caused by shear stress. An excessive viscosity reduction causes an operation failure or damage to the transmission. Considering above factor, the authors focused attention on the potential of a low viscosity formulation to improve fuel efficiency by reducing an internal stirring-resistance of the transmission. Also from the viewpoint of friction characteristics, the performance of a base oil was studied. Utilizing the EHL (Elast-Hydrodynamic Lubrication) tester [1] and vehicle tests, the performance of base oils was evaluated for the fluid development.
Technical Paper

A Comparison of Methods for Evaluating Automatic Transmission Fluid Effects on Friction Torque Capacity - A Study by the International Lubricant Standardization and Approval Committee (ILSAC) ATF Subcommittee

1998-10-19
982672
As part of the International Lubricant Standardization and Approval Committee's (ILSAC) goal of developing a global automatic transmission fluid (ATF) specification, members have been evaluating test methods that are currently used by various automotive manufacturers for qualifying ATF for use in their respective transmissions. This report deals with comparing test methods used for determining torque capacity in friction systems (shifting clutches). Three test methods were compared, the Plate Friction Test from the General Motors DEXRON®-III Specification, the Friction Durability Test from the Ford MERCON® Specification, and the Japanese Automotive Manufacturers Association Friction Test - JASO Method 348-95. Eight different fluids were evaluated. Friction parameters used in the comparison were breakaway friction, dynamic friction torque at midpoint and the end of engagement, and the ratio of end torque to midpoint torque.
Technical Paper

NOx Trap Catalyst Technologies to Attain 99.5% NOx Reduction Efficiency for Lean Burn Gasoline Engine Application

2009-04-20
2009-01-1077
For fuel economy improvement by lean-burn gasoline engines, extension of their lean operation range to higher loads is desirable as more fuel is consumed during acceleration. Urgently needed therefore is development of emission control systems having as high NOx conversion efficiency as three-way catalysts (TWC) even with more frequent lean operation. The authors conducted a study using catalysts loaded with potassium (K) as the only NOx trapping agent in an emission control system of a lean-burn gasoline engine.
Technical Paper

Development of a direct-injection diesel engine with mixture formation by fuel spray impingement

2000-06-12
2000-05-0102
The mixture formation by fuel spray impingement (OSKA system) was applied to a small direct-injection diesel engine in order to reduce the wall quenching- induced emissions, i.e., the emissions of THC and soluble organic fractions (SOF). Experiments were carried out using a single-cylinder engine, fitted with various piston cavity geometries, ran under a wide range of compression ratios and fuel injection specifications. The piston cavity was designed as a centrally located reentrant type. The combination of the high squish flow and the weak penetration of the OSKA spray was very effective in reducing harmful emissions. A short ignition delay, under the retarded fuel injection timing, was obtained because of the high compression ratio. The OSKA DI diesel engine showed reduced NOx, smoke, and THC emissions without deterioration of the fuel consumption compared to modern DI diesel engines used in automotive applications.
Technical Paper

Study of Homogeneous Charge Compression Ignition Using a Rapid Compression Machine

2001-03-05
2001-01-1033
The purpose of this study is to explain the characteristics of homogeneous charge compression ignition. n-Heptane, which has the same cetane number as diesel fuel, was chosen for the fuel. A rapid compression machine was used to clarify the effects of air-fuel ratio, O2 concentration, and compression temperature on ignition delay and NOx emission. These investigations allowed the introduction of a formula for ignition delay.
Technical Paper

Trend toward weight reduction of automobile body in Japan

2000-06-12
2000-05-0240
With society demanding automobiles that provide higher fuel efficiency, safety of occupants in collisions and that at the end of their service life can be recycled with low environmental impact, the steel industry is tackling the needs of the automobile industry by developing ever-higher performance steel materials and simulation technologies that can demonstrate the performance of steel materials at the development stage without the need for costly prototype testing. In this paper, weight reduction of automobile body in Japan will be discussed. The main items will be as follows: (1) Development of Automobile Steel Sheets, (2) Materials for Automobile Bodies, (3) Materials and Technologies (Tailored Blanks, Hydroforming and Locally Quenching) for Reducing the Weight of Panels and Reinforcing members, (4) Future Prospects.
Technical Paper

Utilization of Waste Vegetable Oil Methyl Ester for Diesel Fuel

2001-05-07
2001-01-2021
Considerable amounts (400 ∼ 600 thousand tons) of waste vegetable oil in Japan are still flushed down the drain every year. Utilization of waste vegetable oil for diesel fuel leads to two advantages for environmental protection, to reduce CO2 emission from engines and to avoid water pollution of rivers. In this study, combustion characteristics of waste vegetable oil methyl ester (WME) are investigated in detail by not only engine test run but also observation of burning flames in a visual engine. As results indicate, WME shows rather better combustion state in the visual engine and lower smoke emission from a high-speed DI test engine than gas oil. Moreover, by emulsifying WME with water, further improvement of combustion and more than 18 % reduction of NOx emission is carried out.
Technical Paper

A New Method of Stress Calculation in Spot Welded Joint and Its Application to Fatigue Life Prediction of Actual Vehicle

2003-10-27
2003-01-2809
A method of fatigue life prediction of spot welded joint under multi-axial loads has been developed by fatigue life estimation working groups in the committee on fatigue strength and structural reliability of JSAE. This method is based on the concept of nominal structural stress ( σ ns) proposed by Radaj and Rupp, and improved so that D value is not involved in stress calculation. The result of fatigue life estimation of actual vehicle with nominal structural stress which was calculated through newly developed method had very good correlation with the result of multi-axial loads fatigue test carried out with test piece including high strength steel.
Technical Paper

New 440MPa High-Strength Steel for Vehicle Outer-Panel

2003-10-27
2003-01-2832
New 440MPa class high-strength steel, which had high r-value(1.6) and elongation(38%), was applied to outer-panel for the first time in the world. In this development FEM simulation was carried out to clarify the necessary steel properties, and the production conditions in strip mill were established. 10-kg weight reduction was realized by using this steel.
Technical Paper

Fatigue life prediction for welded steel sheet structures

2003-10-27
2003-01-2878
In this paper the fatigue life of welded steel sheet structures is predicted by using FE-Fatigue, which is one of fatigue analysis software tools on the market, and these predicted results are evaluated by reference to corresponding experimental results. Also, we try to predict these structures by using two fatigue life prediction theories established by the JSAE fatigue and reliability committee to compare prediction results. It was confirmed that spot welds fatigue life predictions agree qualitatively with corresponding experimental results and arc welds fatigue life predictions are in good agreement with corresponding experimental results in cases where the SN curve database is modified appropriately.
Technical Paper

Crashworthiness Improvement of the Side Crash by the Work Hardening Effect of Pre-Strained High Strength Steel

2001-10-16
2001-01-3112
In order to examine the compatibility of improvement of crashworthiness with weight saving of automobiles by using high strength steel, a combination analysis of Finite Element Method and Dynamic Mechanical Properties has been established. Material properties used in this analysis have been measured by “one bar method” high velocity tensile tests, which can examine the deformation behavior of materials at a bend crush speed range (∼55km/h). It was confirmed that the strength of steel measured by one bar method was raised remarkably after press and hydro forming of high strength steels. It was also confirmed by FEM analysis and load drop test that absorbed energy of bend crush was improved by pre-strain effect. Further, we proved that absorbed energy of bend crush was also improved by appropriate design of thickness and the ratio of bend span and plate length. These effects are applicable to respective high strength steels.
Technical Paper

Effect of Strengthening Mechanism on Fatigue Properties of Hot-Rolled Sheet Steels

2002-03-04
2002-01-0042
The influence of tensile strength on fatigue strength and the effect of strengthening mechanism on fatigue notch factor were investigated into conventional mild steels, HSLA steels, DP steels and TRIP steels. The grade of studied steels was altered from 440MPa to 780MPa. Not only smooth fatigue specimens with side surface ground and smooth fatigue specimens with laser-cut side surface but also fatigue specimens with a pierced hole were prepared for each of steel sheets. Fatigue tests were conducted in an axial load method. These experiments made it clear that the fatigue limits of smooth specimen increase along the tensile strength approximately independent of strengthening mechanism but those of notched specimen do not necessarily increase along the tensile strength. Namely, fatigue limits of DP steels and TRIP steels with notch increase in proportion to tensile strength although those of HSLA steels with notch do not increase.
Technical Paper

Predictive Calculation of Idling Rattle in Manual Transmissions -Based on Experimental Measurements of Gear Vibration Occurring in Backlashes-

2003-03-03
2003-01-0678
It is generally known that the idling rattle in manual transmissions is caused by gear tooth portions that make repeated impact-generating vibrations in the backlashes. These vibrations result from rotational fluctuations of the flywheel induced by combustion in the engine. In the study reported here, the authors constructed an experimental setup using rotary encoders and a transient torsional angle converter that allowed the long-awaited direct measurement of impact-generating vibrations in the backlashes. Using this experimental result, the following ideas that the authors must pay attention for the numerical simulation are obtained. That is, transmission drag torque is to be input and treated as the offset value in the torque value of the torsional characteristics in the clutch disc, and coefficients of attenuation have great influence upon the calculation result.
Technical Paper

Improvement of BIW NVH Characteristics Using a Concurrent Design Optimization Approach

2003-05-05
2003-01-1596
The low frequency noise, vibration and harshness (NVH) characteristics play a critical role in the design of vehicle Body-In-White (BIW) structures. Lower order modes influence the structural reliability of the vehicle as well as its ride and handling characteristics. Special consideration is given to ensure that they are spaced apart and not coincident with the frequencies of other vehicle subsystems (e.g. engine and chassis). The added stiffness required to improve the NVH characteristics comes at a cost: increased BIW mass, which affects vehicle dynamics, fuel economy, and point mobilities/structural inertances. This paper documents a procedure to balance BIW build cost, mass and structural performance through an integrated optimization process.
Technical Paper

Theoretical Analysis and Proposition to Reduce Self-Excited Vibration of Automotive Shock Absorber

2003-05-05
2003-01-1471
Knock noise induced by automotive shock absorbers has serious influence on driving comfort and vehicle quality. Some research focusing on knock noise had been introduced in the past. However there is the unidentified phenomenon that has been unnoticed. This paper describes the new theory to clarify one of the unidentified phenomenon and proposes the equation for stability assessment which is useful on designing stage of development. First of all, the characteristics of the unidentified rod vibration of shock absorbers are investigated experimentally. Second, the new theory is established on the basis of the non-linear physical model with friction forces between piston and cylinder. This theory shows that the unstable vibration, so called the Self Excited Vibration, can be induced by not only friction property but also structure of rod and piston. Third, the equation for stability assessment, which is useful on designing stage of development, is proposed on the basis of new theory.
Technical Paper

Properties of a Newly Developed Organic Composite Coated Steel Sheet for Automotive Use

1992-02-01
920172
The newly developed sheet steel lightly coated with an organic composite is as follows. Zn-Ni alloy plated sheet steel with a coating weight of 30 g/m2 and average Ni concentration of 11.5 ∼12.0 % is chromated through electrolysis. The coating weight of chromate film is 50 ∼90 mg/m2 in Cr. Furthermore, emulsified olefin-acrylic acid copolymer resin mixed with colloidal silica of particle size 7 ∼8 nm applied to a thickness of 1.0 ∼1.8 μm. Olefin-acrylic acid copolymer resin and colloidal silica are mixed at the rate of 100 and 30 (parts by weight). It maintains excellent corrosion resistance even after forming, C-ED paint corrosion resistance and paint adhesion. Furthermore, it has excellent perforation resistance. The product has excellent weldability and is well suited to continuous forming, too.
Technical Paper

A Newly Developed Variable Valving Mechanism with Low-Mechanical Friction

1992-02-01
920451
Since the intake and exhaust valve timings that provide the best fuel economy, idle stability, or highest power change according to the engine operating zone, a variable valve timing system is very beneficial. Also, roller followers, which reduce mechanical friction loss of a valve train mainly at low engine speed, are commonly used to improve fuel economy in urban driving conditions. This paper presents a newly developed 4-valve variable-valve-timing mechanism with roller followers. Different intake- and exhaust-valve timings and lifts are selected independently, depending upon whether engine speed is low or high. Durability tests of running at maximum engine speed and switching between low- and high-speed cams were conducted and good test results were obtained.
Technical Paper

Application of Vibration Damping Steel Sheet for Autobody Structural Parts

1992-02-01
920249
As a demand for vehicles of higher functionality grows, automakers and material suppliers are devoting increasing efforts to develop technologies for greater safety, lighter weight, higher corrosion resistance, and enhanced quietness. The resin-sandwiched vibration damping steel sheet (VDSS), developed as a highly functional material for reducing vehicle vibration and noise, has been used for oil pans1) and compartment partitions2). First applied for a structural dash panel of the new Mazda 929, a Zn-Ni electroplated VDSS which allows direct electric welding has contributed to greater weight reduction as well as improved quietness.
X