Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Aftertreatment Architecture and Control Methodologies for Future Light Duty Diesel Emission Regulations

2017-03-28
2017-01-0911
Future light duty vehicles in the United States are required to be certified on the FTP-75 cycle to meet Tier 3 or LEV III emission standards [1, 2]. The cold phase of this cycle is heavily weighted and mitigation of emissions during this phase is crucial to meet the low tail pipe emission targets [3, 4]. In this work, a novel aftertreatment architecture and controls to improve Nitrogen Oxides (NOx) and Hydrocarbon (HC) or Non Methane Organic gases (NMOG) conversion efficiencies at low temperatures is proposed. This includes a passive NOx & HC adsorber, termed the diesel Cold Start Concept (dCSC™) catalyst, followed by a Selective Catalytic Reduction catalyst on Filter (SCRF®) and an under-floor Selective Catalytic Reduction catalyst (SCR). The system utilizes a gaseous ammonia delivery system capable of dosing at two locations to maximize NOx conversion and minimize parasitic ammonia oxidation and ammonia slip.
Journal Article

Critical Performance and Durability Parameters of an Integrated Aftertreatment System used to Meet 2007 Tier II Emission Standards

2008-04-14
2008-01-0769
Over the last decade, diesel engine emissions have been reduced significantly. The Tier II emissions requirements drive very low levels of NOx, PM, and NMHC. Meeting these standards with changes in engine operation and architecture is not feasible, thus exhaust aftertreatment systems are required. Key to successful application of after treatment systems is the thorough integration of the engine and aftertreatment system operation, and a detailed understanding of the critical parameters controlling emissions reduction. The objective of this paper is to present the results of an integrated aftertreatment system used to meet 2007 EPA emissions standards for a diesel engine. In this paper, the functional aspect of each aftertreatment system component will be described followed by a description of the total system function in order to lay the foundation for understanding the integration of the aftertreatment system with the engine.
Technical Paper

The Effects of Thermal Degradation on the Performance of a NOX Storage/Reduction Catalyst

2009-04-20
2009-01-0631
The performance characteristics of a commercial lean-NOX trap catalyst were evaluated between 200 and 500°C, using H2, CO, and a mixture of both H2 and CO as reductants before and after different high-temperature aging steps, from 600 to 750°C. Tests included NOX reduction efficiency during cycling, NOX storage capacity (NSC), oxygen storage capacity (OSC), and water-gas-shift (WGS) and NO oxidation reaction extents. The WGS reaction extent at 200 and 300°C was negatively affected by thermal degradation, but at 400 and 500°C no significant change was observed. Changes in the extent of NO oxidation did not show a consistent trend as a function of thermal degradation. The total NSC was tested at 200, 350 and 500°C. Little change was observed at 500°C with thermal degradation but a steady decrease was observed at 350°C as the thermal degradation temperature was increased.
Technical Paper

Decoupling the Interactions of Hydrocarbons and Oxides of Nitrogen Over Diesel Oxidation Catalysts

2011-04-12
2011-01-1137
Oxidation of NO to NO₂ over a Diesel Oxidation Catalyst (DOC) plays an important role in different types of aftertreatment systems, by enhancing NOx storage on adsorber catalysts, improving the NOx reduction efficiency of SCR catalysts, and enabling the passive regeneration of Diesel Particulate Filters (DPF). The presence of hydrocarbon (HC) species in the exhaust is known to affect the NO oxidation performance over a DOC; however, specific details of this effect, including its underlying mechanism, remain poorly understood. Two major pathways are commonly considered to be responsible for the overall effect: NO oxidation inhibition, due to the presence of HC, and the consumption of the NO₂ produced by reaction with hydrocarbons. In this work we have attempted to decouple these two pathways, by adjusting the catalyst inlet concentrations of NO and NO₂ to the thermodynamic equilibrium levels and measuring the composition changes over the catalyst in the presence of HC species.
Technical Paper

Sustained Low Temperature NOx Reduction

2018-04-03
2018-01-0341
Sustained NOx reduction at low temperatures, especially in the 150-200 °C range, shares some similarities with the more commonly discussed cold-start challenge, however, poses a number of additional and distinct technical problems. In this project, we set a bold target of achieving and maintaining 90% NOx conversion at the SCR catalyst inlet temperature of 150 °C. This project is intended to push the boundaries of the existing technologies, while staying within the realm of realistic future practical implementation. In order to meet the resulting challenges at the levels of catalyst fundamentals, system components, and system integration, Cummins has partnered with the DOE, Johnson Matthey, and Pacific Northwest National Lab and initiated the Sustained Low-Temperature NOx Reduction program at the beginning of 2015 and completed in 2017.
Journal Article

Impact of Water Vapor on the Performance of a Cu-SSZ-13 Catalyst under Simulated Diesel Exhaust Conditions

2021-04-06
2021-01-0577
Cu-SSZ-13 selective catalytic reduction (SCR) catalysts are broadly applied in diesel aftertreatment systems for the catalytic conversion of oxides of nitrogen (NO + NO2). Diesel exhaust contains a wide range of water vapor concentrations depending on the operating condition. In this study, we evaluate the impact of water vapor on the relevant SCR catalytic functions including NOx conversion, NO oxidation, NH3 oxidation, and N2O formation under both standard and fast SCR conditions. Reactor-based experiments are conducted in the presence and absence of water vapor. Results indicate that water vapor can have both a positive and negative impact on low temperature NOx conversion for standard SCR reaction. At low inlet NOx concentrations, the presence of water vapor has a negative effect on NOx conversion, whereas, at high inlet NO concentrations, water vapor improves NOx conversion.
Technical Paper

The Influences of Testing Conditions on DOC Light-Off Experiments

2023-04-11
2023-01-0372
Diesel oxidation catalyst (DOC) is one of the critical catalyst components in modern diesel aftertreatment systems. It mainly converts unburned hydrocarbon (HC) and CO to CO2 and H2O before they are released to the environment. In addition, it also oxidizes a portion of NO to NO2, which improves the NOx conversion efficiency via fast SCR over the downstream selective catalytic reduction (SCR) catalyst. HC light-off tests, with or without the presence of NOx, has been typically used for DOC evaluation in laboratory. In this work, we aim to understand the influences of DOC light-off experimental conditions, such as initial temperature, initial holding time, HC species, with or without the presence of NOx, on the DOC HC light-off behavior. The results indicate that light-off test with lower initial temperature and longer initial holding time (at its initial temperature) leads to higher DOC light-off temperature.
Journal Article

Laboratory sulfation of an ammonia slip catalyst with a real-world SO2 concentration

2023-04-11
2023-01-0380
Upcoming, stricter diesel exhaust emissions standards will likely require aftertreatment architectures with multiple diesel exhaust fluid (DEF) introduction locations. Managing NH3 slip with technologies such as an ammonia slip catalyst (ASC) will continue to be critical in these future aftertreatment systems. In this study, we evaluate the impact of SO2 exposure on a state-of-the-art commercially available ASC. SO2 is co-fed at 0.5 or 3 ppmv to either approximate or accelerate a real-world exhaust SO2 impact. ASC performance during sulfur co-feeding is measured under a wide variety of simulated real-world conditions. Results indicate that the loss of NO conversion during SCR is dependent on the cumulative SO2 exposure, regardless of the inlet SO2 concentration. Meanwhile, N2O formation under SCR conditions is nonlinearly affected by SO2 exposure, with formation increasing during 0.5 ppmv SO2 exposure but decreasing in the presence of 3 ppmv SO2.
Technical Paper

Performance Comparison Analysis between Biodiesel and Diesel over a Commercial DOC Catalyst

2024-04-09
2024-01-2707
Biodiesel is a promising alternative to traditional diesel fuel due to its similar combustion properties to diesel and lower carbon emissions on a well-to-wheel basis. However, combusting biodiesel still generates hydrocarbon (HC), CO, NOx and particulate matter (PM) emissions, similar to those from traditional diesel fuel usage. Therefore, aftertreatment systems will be required to reduce these emissions to meet increasingly stringent emission regulations to minimize the impact to the environment. Diesel oxidation catalysts (DOC) are widely used in modern aftertreatment systems to convert unburned HC and CO, to partially convert NO to NO2 to enhance downstream selective catalytic reaction (SCR) catalyst efficiency via fast SCR and to periodically clean-up DPF via controlled soot oxidation. In this work, we focus on the performance difference between biodiesel and diesel over a commercial DOC catalyst to identify the knowledge gap during the transition from diesel fuel to biodiesel.
X