Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Critical Performance and Durability Parameters of an Integrated Aftertreatment System used to Meet 2007 Tier II Emission Standards

2008-04-14
2008-01-0769
Over the last decade, diesel engine emissions have been reduced significantly. The Tier II emissions requirements drive very low levels of NOx, PM, and NMHC. Meeting these standards with changes in engine operation and architecture is not feasible, thus exhaust aftertreatment systems are required. Key to successful application of after treatment systems is the thorough integration of the engine and aftertreatment system operation, and a detailed understanding of the critical parameters controlling emissions reduction. The objective of this paper is to present the results of an integrated aftertreatment system used to meet 2007 EPA emissions standards for a diesel engine. In this paper, the functional aspect of each aftertreatment system component will be described followed by a description of the total system function in order to lay the foundation for understanding the integration of the aftertreatment system with the engine.
Technical Paper

Advanced Catalyst Solutions for Hydrocarbon Emissions Control During Rich Operation of Lean NOx Trap Systems

2009-04-20
2009-01-0282
The operation of NOx Adsorber catalysts (NAC), also often referred to as Lean NOx Trap catalysts or NOx Storage-reduction catalysts, entails frequent periodic NOx regeneration events. These are accomplished by creating a net reducing, fuel-rich environment in the exhaust. The reduction of hydrocarbon emissions which occur during such fuel-rich events is challenging, due to the oxygen-deficient environment. In order to overcome this limitation, two possibilities exist: (i) oxygen can be stored during lean phase, to be used for hydrocarbon slip oxidation in the subsequent rich phase, or (ii) unreacted hydrocarbons can be trapped during the rich phase and oxidized during the following lean phase. In this work, two groups of catalytic solutions were developed and evaluated for hydrocarbon emission control based on these approaches: an Oxygen Storage Compound (OSC) based catalyst and zeolite-based hydrocarbon trap catalyst.
X