Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Water Injection: a Technology to Improve Performance and Emissions of Downsized Turbocharged Spark Ignited Engines

2017-09-04
2017-24-0062
Knock occurrence and fuel enrichment, which is required at high engine speed and load to limit the turbine inlet temperature, are the major obstacles to further increase performance and efficiency of down-sized turbocharged spark ignited engines. A technique that has the potential to overcome these restrictions is based on the injection of a precise amount of water within the mixture charge that can allow to achieve important benefits on knock mitigation, engine efficiency, gaseous and noise emissions. One of the main objectives of this investigation is to demonstrate that water injection (WI) could be a reliable solution to advance the spark timing and make the engine run at leaner mixture ratios with strong benefits on knock tendency and important improvement on fuel efficiency.
Technical Paper

Effects of Premixed Low Temperature Combustion of Fuel Blends with High Resistance to Auto-ignition on Performances and Emissions in a High Speed Diesel Engine

2011-09-11
2011-24-0049
This paper reports results of an experimental investigation to demonstrate the potential to employ blends of fuels having low cetane numbers that can provide high resistance to auto-ignition to reduce simultaneously NOx and smoke. Because of the higher resistance to auto-ignition, blends of diesel and gasoline at different volume fraction may provide more time for the mixture preparation by increasing the ignition delay. The result produces the potential to operate under partially premixed low temperature combustion with lower levels of EGR without excessive penalties on fuel efficiency. In addition to the diesel fuel, the tested blends were mixed by the baseline diesel with 20% and 40% of commercial EURO IV 98 octane gasoline by volume, denoted G20 and G40. The experimental activity has been performed on a turbocharged, water cooled, DI diesel engine, equipped with a common rail injection system.
X