Refine Your Search

Topic

Search Results

Viewing 1 to 10 of 10
Technical Paper

Mixed Signal Power IC for Automotive Electronics

2007-04-16
2007-01-1595
Many ICs are used in various electronic components in automotive applications, such as ECUs (electronic control units) and smart actuators. Automotive ICs required the following features: (1) high integration of analog, digital and output devices; (2) high breakdown voltage for analog devices standing the battery voltage; (3) highly accurate control for analog circuits; (4) susceptibility under harsh operating conditions, such as high ambient temperature and high humidity; and (5) high surge immunity such as ESD (electrostatic discharge) robustness. To meet these requirements, we developed analog and output devices with improved surge endurance based on SOI wafer and trench-dielectric-isolation technologies. Analog circuit applications, especially accurate power management or high-precision solenoid driving, demands stable temperature-compensated output. Load dump and battery-jumping also needs high voltage protection and high noise immunity for these devices.
Technical Paper

Mobile Air-conditioning Actions for Global Warming Reduction

2008-01-09
2008-28-0016
In Japan, from the viewpoint of ozone layer protection, specified CFCs (Chlorofluorocarbons) phase-out started in 1992 and completed by 1995. HFC-134a (Hydro fluorocarbon-134a) is now dominant in the market. HFC-134a, the replacement, has zero ozone depleting potential, while it still has a higher global warming potential (GWP = 1430). In this paper, efforts of DENSO and the Japanese industry from aspects of refrigerant emission reduction and energy efficiency improvement are introduced.
Technical Paper

Concept of Vehicle Electric Power Flow Management System (VEF)

2004-03-08
2004-01-0361
Increasing electric loads in a vehicle causes over-discharge of a battery and drag torque due to an alternator. This paper gives a system concept of vehicle electric power flow management to solve these issues. Its primary function includes preserving electricity in a battery, stabilizing electric bus voltage, interfacing with vehicle torque control system, and improving fuel economy. The key point to realize such a system is a unified structure. It offers ‘Plug and Play’ function for electric power management components. Newly developed Vehicle Electric Power Flow Management System (VEF ) totally controls electric power flow in a vehicle. VEF contains an Electric Power Manager and its functional sub-systems, and controls them with the key parameter ‘electric power’. The sub-system includes Generation, Storage, Conversion, and Distribution to the loads.
Technical Paper

Super Ignition Spark Plug with Fine Center & Ground Electrodes

2003-03-03
2003-01-0404
Spark plugs with higher ignitability are continuously in great demand to realize high fuel efficiency and low emissions. To meet this demand, DENSO launched the Iridium Spark Plug in 1997, which realized the two characteristics that had been conventionally difficult to achieve concurrently-high ignitability and long life. The development of this product was enabled by miniaturizing the center electrode, produced using DENSO's original, highly wear-resistant iridium alloy (featuring a high melting point and excellent oxidation resistance). While spark plugs are now required to have a longer service life, they are also required to be higher in ignitability, as exhaust gas regulations have been tightened recently. However, the effort to miniaturize the center electrode is reaching a limit.
Technical Paper

The Development of the Lead Free Carbon Brush for Starters

2005-04-11
2005-01-0599
Carbon brushes for automotive starters are used under severe conditions of high electric current density, high contact pressure and high sliding velocity. Therefore lead has traditionally been added to brushes to improve performance and durability. Lead is an environmental hazardous substance. In the EU, the law prohibits adding lead to brushes for electric motors which is installed on new automobiles in and after January 2005. In order to develop the lead free carbon brush for starters, we analyzed the effect and selected substitutive substance of lead. Adding lead to the brush reduces the electric resistance increase of the brush in high-temperature and high-humidity atmosphere and in high-temperature atmosphere. Furthermore lead reduces the wear amount of brush. We developed the lead free brush surpassing the lead addition brush in performance and durability by addition of lead alternatives silver and zinc.
Technical Paper

Optimal Control of Plural Power Supply Systems with Vehicle Electric Power Flow Management System (VEF)

2006-04-03
2006-01-1223
A lot of electric components have been installed in a vehicle today for comfort, safety and environment. This tendency is said to be continued in the future. Therefore, additional power supplies such as exhaust gas electricity generation system and thermal electricity generation system have been developed in the world to supply additional electricity as well as an enlargement of an alternator. However, if these new electricity supply systems are installed in a present electric power system that is controlled based on a voltage feedback, each supply system cannot be controlled effectively, because it is difficult to control output power of each system independently. An electric power based control system, Vehicle Electric power Flow management system (VEF), has been developed to avoid this problem. Sum of required electric power is calculated based on electric loads power and battery charging power. This required power is allocated to each power supply system.
Technical Paper

Sensorless Control of a Brushless Motor for the ESC Unit

2023-04-11
2023-01-0452
In general, automatic braking uses an electric stability control (ESC) hydraulic unit that can automatically increase the hydraulic pressure in the wheel cylinder (hereinafter called wheel pressure), independent of the driver’s braking operation. The hydraulic unit should have sufficient pressure response to apply autonomous emergency braking (AEB). It was necessary for the hydraulic unit to have a high flow rate for the pressure response. To satisfy the performance requirements of the AEB, a brushless motor, which has a high maximum rotational speed and good response, is adopted for the hydraulic unit. Furthermore, sensorless control, which does not require a rotation angle sensor, has been developed so that the motor size can be small and common to conventional units. The developed sensorless control can switch the driving methods in three states: pre-rotation, low speed, and high speed.
Technical Paper

Study on Flame Behavior Control by the Electric Field

2015-11-17
2015-32-0738
The purpose of this study is to elucidate flame propagation behavior of homogeneous propane-air mixture under application of non-uniform electric field. A needle-shaped electrode was attached to the ceiling and a plate electrode was set at bottom of combustion chamber, so that the electric field was applied in the direction of the chamber's vertical axis. A homogeneous propane-air mixture was supplied at equivalence ratio of 1.0 and was ignited by leaser induced breakdown under atmospheric pressure and room temperature. It was found that the flame front and plate electrode were repelled each other and a thin air layer was formed between the flame and plate electrode when a relatively low positive DC non-uniform electric field was applied to the needle-shaped electrode. It might be thought that the induced current was generated in the flame front, so that the flame front and plate electrode repelled each other.
Journal Article

Development of Inverter Drive Unit for Battery Electric Vehicle

2023-04-11
2023-01-0528
Toyota Motor Corporation has developed a new battery electric vehicle (BEV) on the dedicated e-TNGA platform for BEVs, which was designed to lower the center of gravity of the vehicle and increase body stiffness. In addition to a full-time 4WD system, another feature of this new BEV is its pleasurable driving experience. A new inverter drive unit was developed for this system. Unlike the previous inverter, the advantage of the new inverter is that it is small enough to be mounted inside the transaxle housing, thereby contributing to the availability of interior and luggage space. The temperature rise of the power semiconductors in the inverter was reduced considerably by the development of a new power semiconductor for BEVs. This enables a parallel layout of two power semiconductors instead of three. The components of the inverter were also downsized. A coreless current sensor was adopted, and capacitors were developed with significantly lower capacitance.
Technical Paper

Development of New 2.0-Liter Plug-in Hybrid System for the Toyota Prius

2024-04-09
2024-01-2169
Reducing vehicle CO2 emissions is an important measure to help address global warming. To reduce CO2 emissions on a global basis, Toyota Motor Corporation is taking a multi-pathway approach that involves the introduction of the optimal powertrains according to the circumstances of each region, including hybrid electric (HEVs) and plug-in hybrid electric vehicles (PHEVs), as well as battery electric vehicles (BEVs). This report describes the development of a new PHEV system for the Toyota Prius. This system features a traction battery pack structure, transaxle, and power control unit (PCU) with boost converter, which were newly developed based on the 2.0-liter HEV system. As a result, the battery capacity was increased by 1.5 times compared to the previous model with almost the same battery pack size. Transmission efficiency was also improved, extending the distance that the Prius can be driven as an EV by 70%.
X