Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Beyond MPG: Characterizing and Conveying the Efficiency of Advanced Plug-In Vehicles 

2011-11-08
Research in plug in vehicles (PHEV and BEV) has of course been ongoing for decades, however now that these vehicles are finally being produced for a mass market an intense focus over the last few years has been given to proper evaluation techniques and standard information to effectively convey efficiency information to potential consumers. The first challenge is the development of suitable test procedures. Thanks to many contributions from SAE members, these test procedures have been developed for PHEVs (SAE J1711 now available) and are under development for BEVs (SAE J1634 available later this year). A bigger challenge, however, is taking the outputs of these test results and dealing with the issue of off-board electrical energy consumption in the context of decades-long consumer understanding of MPG as the chief figure of merit for vehicle efficiency.
Video

Codes and Standards – Global Harmonization

2011-11-18
Career development is no longer something you focus on in your twenties and are set for life, it is ongoing and constant. New technologies, globalization and the world-wide competition for jobs demand that we continue to grow our skills and knowledge throughout our life. This session will provide you with tools to help you meet this demand as an engineering professional. Participants will create a personal mission statement and set career goals, identify the best way to research new opportunities and build their network while also crafting a personal brand with consistent messaging. Organizer Martha Schanno, SAE International Panelist Caryn Mateer, Transformational Leaders Intl. Kathleen Riley, Transformational Leaders Intl.
Video

Technical Keynote - Introduction to EcoCAR The NeXt Challenge Year Three: Vehicle Refinement and Testing

2012-06-06
Selective Catalytic Reduction (SCR) catalysts are used to reduce NOx emissions from internal combustion engines in a variety of applications [1,2,3,4]. Southwest Research Institute (SwRI) performed an Internal Research & Development project to study SCR catalyst thermal deactivation. The study included a V/W/TiO2 formulation, a Cu-zeolite formulation and a Fe-zeolite formulation. This work describes NH3 storage capacity measurement data as a function of aging time and temperature. Addressing one objective of the work, these data can be used in model-based control algorithms to calculate the current NH3 storage capacity of an SCR catalyst operating in the field, based on time and temperature history. The model-based control then uses the calculated value for effective DEF control and prevention of excessive NH3 slip. Addressing a second objective of the work, accelerated thermal aging of SCR catalysts may be achieved by elevating temperatures above normal operating temperatures.
Video

Impact of Technology on Electric Drive Fuel Consumption and Cost

2012-05-25
In support of the U.S Department of Energy's Vehicle Technologies Program, numerous vehicle technology combinations have been simulated using Autonomie. Argonne National Laboratory (Argonne) designed and wrote the Autonomie modeling software to serve as a single tool that could be used to meet the requirements of automotive engineering throughout the development process, from modeling to control, offering the ability to quickly compare the performance and fuel efficiency of numerous powertrain configurations. For this study, a multitude of vehicle technology combinations were simulated for many different vehicles classes and configurations, which included conventional, power split hybrid electric vehicle (HEV), power split plug-in hybrid electric vehicle (PHEV), extended-range EV (E-REV)-capability PHEV, series fuel cell, and battery electric vehicle.
Video

Comparison of Powertrain Configuration Options for Plug-in HEVs from a Fuel Economy Perspective

2012-05-25
Software products in the automotive industry are by nature widely distributed and costly to update (recall), so high reliability is clearly of utmost importance. Just as clearly, the increasing reliance on remote access to such systems, for diagnostic and other purposes, has made security an essential requirement, and traditional techniques for software development are proving to be inadequate in dealing with these issues. Correctness by Construction is a software design and development methodology that builds reliability and security into the system from the start. It can be used to demonstrate, with mathematical rigor, a program's correctness properties while reducing the time spent during testing and debugging. This paper will discuss the use of Correctness by Construction, and its accompanying SPARK language technology, to improve automotive systems' security and reliability. (The approach can also account for safely issues, although that is not the focus of this paper.)
Video

Boosted HCCI Combustion Using Low-Octane Gasoline with Fully Premixed and Partially Stratified Charges

2012-06-18
High-load HCCI combustion has recently been demonstrated with conventional gasoline using intake pressure boosting. The key is to control the high combustion heat release rates (HRR) by using combustion timing retard and mixture stratification. However, at naturally aspirated and moderately boosted conditions, these techniques did not work well due to the low autoignition reactivity of conventional gasoline at these conditions. This work studies a low-octane distillate fuel with similar volatility to gasoline, termed Hydrobate, for its potential in HCCI engine combustion at naturally aspirated and low-range boosted conditions. The HCCI combustion with fully premixed and partially stratified charges was examined at intake pressures (Pin) from 100 to 180 kPa and constant intake temperature (60�C) and engine speed (1200 rpm).
Journal Article

Sources of UHC Emissions from a Light-Duty Diesel Engine Operating in a Partially Premixed Combustion Regime

2009-04-20
2009-01-1446
Sources of unburned hydrocarbon (UHC) emissions are examined for a highly dilute (10% oxygen concentration), moderately boosted (1.5 bar), low load (3.0 bar IMEP) operating condition in a single-cylinder, light-duty, optically accessible diesel engine undergoing partially-premixed low-temperature combustion (LTC). The evolution of the in-cylinder spatial distribution of UHC is observed throughout the combustion event through measurement of liquid fuel distributions via elastic light scattering, vapor and liquid fuel distributions via laser-induced fluorescence, and velocity fields via particle image velocimetry (PIV). The measurements are complemented by and contrasted with the predictions of multi-dimensional simulations employing a realistic, though reduced, chemical mechanism to describe the combustion process.
Journal Article

Influence of Diesel Injection Parameters on End-of-Injection Liquid Length Recession

2009-04-20
2009-01-1356
Diesel injection parameters effect on liquid-phase diesel spray penetration after the end-of-injection (EOI) is investigated in a constant-volume chamber over a range of ambient and injector conditions typical of a diesel engine. Our past work showed that the maximum liquid penetration length of a diesel spray may recede towards the injector after EOI at some conditions. Analysis employing a transient jet entrainment model showed that increased fuel-ambient mixing occurs during the fuel-injection-rate ramp-down as increased ambient-entrainment rates progress downstream (i.e. the entrainment wave), permitting complete fuel vaporization at distances closer to the injector than the quasi-steady liquid length. To clarify the liquid-length recession process, in this study we report Mie-scatter imaging results near EOI over a range of injection pressure, nozzle size, fuel type, and rate-of-injection shape. We then use a transient jet entrainment model for detailed analysis.
Journal Article

Detailed Unburned Hydrocarbon Investigations in a Highly-Dilute Diesel Low Temperature Combustion Regime

2009-04-20
2009-01-0928
The objective of this research is a detailed investigation of unburned hydrocarbon (UHC) in a highly-dilute diesel low temperature combustion (LTC) regime. This research concentrates on understanding the mechanisms that control the formation of UHC via experiments and simulations in a 0.48L signal-cylinder light duty engine operating at 2000 r/min and 5.5 bar IMEP with multiple injections. A multi-gas FTIR along with other gas and smoke emissions instruments are used to measure exhaust UHC species and other emissions. Controlled experiments in the single-cylinder engine are then combined with three computational tools, namely heat release analysis of measured cylinder pressure, analysis of spray trajectory with a phenomenological spray model using in-cylinder thermodynamics [1], and KIVA-3V Chemkin CFD computations recently tested at LTC conditions [2].
Journal Article

Effect of Ignition Delay on In-Cylinder Soot Characteristics of a Heavy Duty Diesel Engine Operating at Low Temperature Conditions

2009-04-20
2009-01-0946
Low temperature combustion (LTC) strategies, which can mitigate emissions of particulate matter (PM) and nitrogen oxides (NOx) from diesel engines, typically have longer ignition delays compared to conventional diesel operation. With extended ignition delays, more time is available for premixing, which reduces PM formation. The effect of varying ignition delay on the spatial and temporal evolution of soot in LTC diesel jets is studied by imaging the natural soot luminosity, while the in-cylinder soot mass and temperature are measured using two-color soot thermometry. Ignition delay in the engine is controlled by adjusting the intake air temperature while keeping the same charge density at TDC. This allowed us to study sooting characteristics at various ignition delays while keeping the same diesel jet penetration for all the cases.
Journal Article

UHC and CO Emissions Sources from a Light-Duty Diesel Engine Undergoing Dilution-Controlled Low-Temperature Combustion

2009-09-13
2009-24-0043
Unburned hydrocarbon (UHC) and carbon monoxide (CO) emission sources are examined in an optical, light-duty diesel engine operating under low load and engine speed, while employing a highly dilute, partially premixed low-temperature combustion (LTC) strategy. The impact of engine load and charge dilution on the UHC and CO sources is also evaluated. The progression of in-cylinder mixing and combustion processes is studied using ultraviolet planar laser-induced fluorescence (UV PLIF) to measure the spatial distributions of liquid- and vapor-phase hydrocarbon. A separate, deep-UV LIF technique is used to examine the clearance volume spatial distribution and composition of late-cycle UHC and CO. Homogeneous reactor simulations, utilizing detailed chemical kinetics and constrained by the measured cylinder pressure, are used to examine the impact of charge dilution and initial stoichiometry on oxidation behavior.
Journal Article

Modeling and Experiments on Mixture Formation in a Hydrogen Direct-Injection Research Engine

2009-09-13
2009-24-0083
Direct injection offers a large number of degrees of freedom, as it strongly influences the mixture stratification process. Experiments on a single cylinder research engine fuelled by H2, carried out at Argonne National Laboratory, showed the influence of injection parameters (timing and geometry) on engine efficiency and combustion stability. At low load, when a late injection strategy was performed, an unstable engine behavior was detected varying the injection direction. In order to optimize the mixture stratification process in DI H2 engines, it is important to understand the physics underlying the experimental results. A spatially resolved representation of the in-cylinder processes is a useful tool to properly set the injection parameters. Also, the knowledge of the pre-injection flow field is of added value in optimizing the injection process.
Journal Article

Assessment of Multiple Injection Strategies in a Direct-Injection Hydrogen Research Engine

2009-06-15
2009-01-1920
Hydrogen is widely considered a promising fuel for future transportation applications for both, internal combustion engines and fuel cells. Due to their advanced stage of development and immediate availability hydrogen combustion engines could act as a bridging technology towards a wide-spread hydrogen infrastructure. Although fuel cell vehicles are expected to surpass hydrogen combustion engine vehicles in terms of efficiency, the difference in efficiency might not be as significant as widely anticipated [1]. Hydrogen combustion engines have been shown capable of achieving efficiencies of up to 45 % [2]. One of the remaining challenges is the reduction of nitric oxide emissions while achieving peak engine efficiencies. This paper summarizes research work performed on a single-cylinder hydrogen direct injection engine at Argonne National Laboratory.
Journal Article

Comparison of Diesel Spray Combustion in Different High-Temperature, High-Pressure Facilities

2010-10-25
2010-01-2106
Diesel spray experimentation at controlled high-temperature and high-pressure conditions is intended to provide a more fundamental understanding of diesel combustion than can be achieved in engine experiments. This level of understanding is needed to develop the high-fidelity multi-scale CFD models that will be used to optimize future engine designs. Several spray chamber facilities capable of high-temperature, high-pressure conditions typical of engine combustion have been developed, but because of the uniqueness of each facility, there are uncertainties about their operation. For this paper, we describe results from comparative studies using constant-volume vessels at Sandia National Laboratories and IFP.
Journal Article

Analysis of EGR Effects on the Soot Distribution in a Heavy Duty Diesel Engine using Time-Resolved Laser Induced Incandescence

2010-10-25
2010-01-2104
The soot distribution as function of ambient O₂ mole fraction in a heavy-duty diesel engine was investigated at low load (6 bar IMEP) with laser-induced incandescence (LII) and natural luminosity. A Multi-YAG laser system was utilized to create time-resolved LII using 8 laser pulses with a spacing of one CAD with detection on an 8-chip framing camera. It is well known that the engine-out smoke level increases with decreasing oxygen fraction up to a certain level where it starts to decrease again. For the studied case the peak occurred at an O₂ fraction of 11.4%. When the oxygen fraction was decreased successively from 21% to 9%, the initial soot formation moved downstream in the jet. At the lower oxygen fractions, below 12%, no soot was formed until after the wall interaction. At oxygen fractions below 11% the first evidence of soot is in the recirculation zone between two adjacent jets.
Journal Article

Characteristics of Isopentanol as a Fuel for HCCI Engines

2010-10-25
2010-01-2164
Long chain alcohols possess major advantages over the currently used ethanol as bio-components for gasoline, including higher energy content, better engine compatibility, and less water solubility. The rapid developments in biofuel technology have made it possible to produce C 4 -C 5 alcohols cost effectively. These higher alcohols could significantly expand the biofuel content and potentially substitute ethanol in future gasoline mixtures. This study characterizes some fundamental properties of a C 5 alcohol, isopentanol, as a fuel for HCCI engines. Wide ranges of engine speed, intake temperature, intake pressure, and equivalence ratio are investigated. Results are presented in comparison with gasoline or ethanol data previously reported. For a given combustion phasing, isopentanol requires lower intake temperatures than gasoline or ethanol at all tested speeds, indicating a higher HCCI reactivity.
Journal Article

Application of a Tunable-Diode-Laser Absorption Diagnostic for CO Measurements in an Automotive HCCI Engine

2010-10-25
2010-01-2254
An infrared laser absorption technique has been developed to measure in-cylinder concentrations of CO in an optical, automotive HCCI engine. The diagnostic employs a distributed-feedback, tunable diode laser selected to emit light at the R15 line of the first overtone of CO near 2.3 μm. The collimated laser beam makes multiple passes through the cylinder to increase its path length and its sampling volume. High-frequency modulation of the laser output (wavelength modulation spectroscopy) further enhances the signal-to-noise ratio and detection limits of CO. The diagnostic has been tested in the motored and fired engine, exhibiting better than 200-ppm sensitivity for 50-cycle ensemble-average values of CO concentration with 1-ms time resolution. Fired results demonstrate the ability of the diagnostic to quantify CO production during negative valve overlap (NVO) for a range of fueling conditions.
Journal Article

Maximizing Net Present Value of a Series PHEV by Optimizing Battery Size and Vehicle Control Parameters

2010-10-19
2010-01-2310
For a series plug-in hybrid electric vehicle (PHEV), it is critical that batteries be sized to maximize vehicle performance variables, such as fuel efficiency, gasoline savings, and zero emission capability. The wide range of design choices and the cost of prototype vehicles calls for a development process to quickly and systematically determine the design characteristics of the battery pack, including its size, and vehicle-level control parameters that maximize the net present value (NPV) of a vehicle during the planning stage. Argonne National Laboratory has developed Autonomie, a modeling and simulation framework. With support from The MathWorks, Argonne has integrated an optimization algorithm and parallel computing tools to enable the aforementioned development process. This paper presents a study that utilized the development process, where the NPV is the present value of all the future expenses and savings associated with the vehicle.
Journal Article

Isolating the Effects of EGR on HCCI Heat-Release Rates and NOX Emissions

2009-11-02
2009-01-2665
High-load HCCI operation is typically limited by rapid pressure-rise rates (PRR) and engine knock caused by an overly rapid heat-release rate (HRR). Exhaust gas recirculation (EGR) is commonly used in HCCI engines, and it is often stated in the literature that charge dilution with EGR (or high levels of retained residuals) is beneficial for reducing the PRR to allow higher loads without knock. However, EGR/retained-residuals affect other operating parameters such as combustion phasing, which can in turn influence the PRR independently from any effect of the EGR gases themselves. Because of the multiple effects of EGR, its direct benefit for reducing the PRR is not well understood. In this work, the effects of EGR on the PRR were isolated by controlling the combustion phasing independently from the EGR addition by adjusting the intake temperature. The experiments were conducted using gasoline as the fuel at a 1200 rpm operating condition.
X