Refine Your Search

Topic

Author

Search Results

Journal Article

NLMPC for Real Time Path Following and Collision Avoidance

2015-04-14
2015-01-0313
This paper presents a nonlinear control approach to achieve good performances in vehicle path following and collision avoidance when the vehicle is driving under cruise highway conditions. Nonlinear model predictive control (NLMPC) is adopted to achieve online trajectory control based on a simplified vehicle model. GMRES/Continuation algorithm is used to solve the online optimization problem. Simulations show that the proposed controller is capable of tracking the desired path as well as avoiding the obstacles.
Technical Paper

Evaluation of Flow Paths due to Leakages of Flammable Liquids by the SPH Method: Application to Real Engines

2020-04-14
2020-01-1111
One of the most important safety issues for automotive engineering is to avoid any fire due to the ignition of flammable liquids, which may result from leaks. Fire risk is a combination of hot temperature, fast vaporisation and accumulation of vapor in a cavity. In IC engines, potentially flammable liquids are fuel and oil. To guarantee safety, flammable liquids must not come into contact with hot parts of the engine. Consequently, shields are designed to guide the flow path of possible leakages and to take any flammable liquid out of the hot areas. Simulation is a great help to optimize the shape of the shield by investigating a large number of possible leakages rapidly. Recent breakthroughs in numerical methods make it possible to apply simulations to industrial design concepts. The employed approach is based on the Lagrangian Smoothed Particle Hydrodynamics (SPH) method.
Journal Article

Friction Estimation at Tire-Ground Contact

2015-04-14
2015-01-1594
The friction estimation at the tire-ground contact is crucial for the active safety of vehicles. Friction estimation is a key problem of vehicle dynamics and the ultimate solution is still unknown. However the proposed approach, based on a simple idea and on a simple hardware, provides an actual solution. The idea is to compare the tire characteristic at a given friction (nominal characteristic) with the actual characteristic that the tire has while running. The comparison among these two characteristics (the nominal one and the actual one) gives the desired friction coefficient. The friction coefficient is expressed in vector form and a number of running parameters are identified. The mentioned comparison is an efficient but complex algorithm based on a mathematical formulation of the tire characteristic. The actual tire characteristic is somehow measured in real time by a relatively simple smart wheel which is able to detect the three forces and the three moments acting at the hub.
Technical Paper

The Particle Number Counter as a “Black Box” - A Novel Approach to a Universal Particle Number Calibration Standard for Automotive Exhaust

2020-09-15
2020-01-2195
The reduction of vehicle exhaust particle emissions is a success story of European legislation. Various particle number (PN) counters and calibration procedures serve as tools to enforce PN emission limits during vehicle type approval (VTA) or periodical technical inspection (PTI) of in-use vehicles. Although all devices and procedures apply to the same PN-metric, they were developed for different purposes, by different stakeholder groups and for different target costs and technical scopes. Furthermore, their calibration procedures were independently defined by different stakeholder communities. This frequently leads to comparability and interpretation issues. Systematic differences of stationary and mobile PN counters (PN-PEMS) are well-documented. New, low-cost PTI PN counters will aggravate this problem. Today, tools to directly compare different instruments are scarce.
Technical Paper

Torso Improvements in Child Dummies Used for Certification Tests in Europe

1997-11-12
973315
Child dummies used in certification dynamic tests have not been improved since their marketing and their approval as European regulation dummies. Their main shortcoming lies in a too high and therefore unrealistic stiffness of the torso front part. The paper addresses a study carried out in the aim of solving this problem. It includes two parts: in a first section, the changes brought to the dummy torso and intended to improve its biofidelity and to reduce stiffness drastically are described. In order to reach such an objective, the lower part of the upper torso was remodelled; the pelvis profile was redefined and the geometrical and mechanical characteristics of the foam used for the abdominal insert were changed. The results obtained using two transducers installed in the abdominal section are then presented. The measurement principle of the first transducer consists in a pressure measurement, and the principle of the second one in a load measurement.
Technical Paper

Dynamic Tests of Racing Seats and Simulation with Vedyac Code

1998-11-16
983059
Dynamic tests have been performed on carbon fiber racing seats following the FIA regulations. The tests have shown, in rear impact tests, a relatively strong rebound leading to large forward bending of neck, and, in side impact tests, very large lateral displacement of the head, the latter protruding dangerously towards hard portions of the car structure. Stiffening the seat back by steel struts results in reducing strongly both the motion and the acceleration of the head. Simulations of the dynamics of the tests have been done with multi-body models, including the Hybrid III dummy and seat deflection, by means of the program VEDYAC. It has been found that computer simulation can predict very accurately the result of a test, provided the numerical models have been carefully calibrated to match the dummy tolerance bands. Once they have been calibrated and validated with a number of tests, the computer models can be very useful to extend the test results to different test conditions.
Technical Paper

Influence of Both Catalyst Geometry and Fuel Sulfur Content on NOX Adsorber Poisoning

2001-05-07
2001-01-1934
NOx adsorbers are very sensitive to sulfur poisoning and future fuel standards are unlikely to be sufficient to prevent the system from requiring periodic desulfation procedures. The purpose of this paper is to present the effects of low fuel sulfur content such as 50 ppm and 10 ppm on the NOx adsorber efficiency for a diesel application. Through this study, the influence of the substrate cell geometry has also been assessed. The use of a 10 ppm sulfur fuel is not enough to maintain, at a high level, the NOx adsorber performance during a 40,000 km aging test. The desulfation criterion (efficiency loss of 30%) is reached after the first 16,000 km. However, the desulfation operation is not enough to recover the initial catalyst performance and the poisoning velocity increases as the catalyst ages. The hexagonal cell substrate catalyst is less sensitive to sulfur poisoning than a square cell substrate catalyst so that its desulfation frequency is much lower.
Technical Paper

How to Achieve Functional Safety and What Safety Standards and Risk Assessment Can Contribute

2004-03-08
2004-01-1662
In this contribution functional safety is discussed from a car manufacturer's point of view. Typical elements of a safety standard concerning safety activities during the product development process are described as well as management and other supporting processes. Emphasis is laid on the aspect of risk assessment and the determination of safety classes. Experiences with methods for safety analysis like FTA or FMEA are discussed and pros and cons of quantitative safety assessment are argued.
Technical Paper

Sizing in Conceptual Design at BMW

2004-03-08
2004-01-1657
In the early stages of conceptual design the available geometric data are very coarse and the lifespan of a design idea is very short. The structural evaluation and improvement of a design has to take both facts into account. Its focus is on the total vehicle and its performance. This can be estimated by a modeling technique, which is adequate for the lack of geometric details. Static and dynamic global stiffness as well as some aspects of crash and NVH have to be considered. Optimization will lead to the proper sizing and some indication of the potential of the structure. In order to maintain high quality standards this approach has to be supported by specialized CAE tools and extensive rules on modeling techniques and analysis procedures.
Technical Paper

Euroncap~Views and suggestions for improvements

2001-06-04
2001-06-0087
Since its creation in 1996, Euroncap evaluated more than 80 cars, ranging from small and city cars, to larger vehicles such as executive cars and people carriers (MPVs). The testing protocol comprises 3 types of tests: a frontal offset test against a deformable barrier, a 90° lateral impact with a moving deformable barrier, and - since March 2000 - a pole side impact. In addition a set of subsystem tests with impactors on the bonnet and the front face of the car are conducted to assess the pedestrian protection. The aim of this paper is to review the testing and assessment protocols and to compare them with those used in other NCAP systems in the USA, Australia, Japan and Europe. In particular, important Euroncap issues such as the stiffness of heavier vehicles that could be increased in the future, and the nature and weight of the modifiers are discussed. Ways to improve the system are suggested in relation with real-world accident data.
Technical Paper

Virtual testing driven development process for side impact safety

2001-06-04
2001-06-0251
A new simulation tool was established and approved by TRW as part of the continuous improvement of the development process. This tool allows the OEM and the system supplier to keep high quality even with further reduced development times. The introduction of the tool in a side air-bag development program makes it possible to ensure high development confidence with a reduced number of vehicle crash tests and late availability of interior component parts.
Technical Paper

Design and Construction of a Test Rig for Assessing Tyre Characteristics at Rollover

2002-07-09
2002-01-2077
The paper presents a new test rig (named RuotaVia) composed basically by a drum (2,6 m diameter), providing a running contact surface for vehicle wheels. A number of measurements on either full vehicles or vehicle sub-systems (single suspension system or single tyre) can be performed. Tire characteristics influencing rollover can be assessed. The steady-state maximum loads are as follows: Radial: 100kN, tangential: 100kN, lateral (axial with respect to the drum): 100kN. The superstructure carrying a measuring hub can excite the wheel under test up to 20 Hz in lateral and vertical directions. The steer angle range is ± 25 deg, the camber range is ± 80 deg. The minimum eigenfrequency of the drum is higher than 90 Hz and its maximum tangential speed is 440 km/h.
Technical Paper

Ultra Light Compact Economical Vehicle Concept

2002-07-09
2002-01-2071
State of the art demonstrates that weight of vehicle increases with length of car body. Integration of powertrain in mid rear underfloor location enables to shorten car body by more than 0,5m and to save partially heavy longitudinal members. Underfloor integration of power train induces higher stance floor for more conviviality of passengers visibility. Safety factors are improved by lowering gravity centre, better repartition of front / rear masses during braking, easier management of crash by straighter and higher front longitudinal members and free front space. Space frame architecture simplifies light weight technologies application by using 2D bended aluminum profiles. Low investment is ensured by minimising castings application to suspension attachments and interlinking upperbody to underbody. Floor and external panels are designed for aluminum sheet stampings.
Technical Paper

Modeling of Pressure Wave Reflection from Open-Ends in I.C.E. Duct Systems

2010-04-12
2010-01-1051
In the most elementary treatment of plane-wave reflection at the open end of a duct system, it is often assumed that the ends are pressure nodes. This implies that pressure is assumed as a constant at the open end termination and that steady flow boundary condition is supposed as instantaneously established. While this simplifying assumption seems reasonable, it does not consider any radiation of acoustic energy from the duct into the surrounding free space; hence, an error in the estimation of the effects of the flow on the acoustical response of an open-end duct occurs. If radiation is accounted, a complicated three-dimensional wave pattern near the duct end is established, which tends to readjust the exit pressure to its steady-flow level. This adjustment process is continually modified by further incident waves, so that the effective instantaneous boundary conditions which determine the reflected waves depend on the flow history.
Technical Paper

Comprehensive Approach for the Chassis Control Development

2006-04-03
2006-01-1280
Handling characteristics, ride comfort and active safety are customer relevant attributes of modern premium vehicles. Electronic control units offer new possibilities to optimize vehicle performance with respect to these goals. The integration of multiple control systems, each with its own focus, leads to a high complexity. BMW and ITK Engineering have created a tool to tackle this challenge. A simulation environment to cover all development stages has been developed. Various levels of complexity are addressed by a scalable simulation model and functionality, which grows step-by-step with increasing requirements. The simulation environment ensures the coherence of the vehicle data and simulation method for development of the electronic systems. The article describes both the process of the electronic control unit (ECU) development and positive impact of an integrated tool on the entire vehicle development process.
Technical Paper

Rear Light Redundancy and Optimized Hazard Warning Signal - New Safety Functions for Vehicles

1997-02-24
970656
If a tail light bulb burns out, the failure will be detected by an electronic light check module. The missing tail light will be substituted by the stop light function. The luminous intensity of the stop light will be automatically reduced to the tail light level. If a car is equipped with rear fog lights, a faulty brake light can be substituted, similarly by a reduced rear fog light. Today the hazard warning signal has the same frequency as the turn signal indicator. If one side of a car is blocked by for example another car then it is not possible to differentiate between the aforementioned signal types. Therefore the hazard warning information is lost. The suggested new hazard warning signal consists of a double-flash with a short break, the time period is nearly unchanged.
Technical Paper

Multi-Physics Simulations of Ice Shedding from Wind Turbines

2023-06-15
2023-01-1479
Wind turbines in cold climates are likely to suffer from icing events, deteriorating the aerodynamic performances of the blades and decreasing their power output. Continuous ice accretion causes an increase in the ice mass and, consequently, in the centrifugal force to which the ice shape is subjected. This can result in the shedding of chunks of ice, which can jeopardize the aeroelastic properties of the blade and, most importantly, the safety of the surrounding people and of the wind turbine structure itself. In this work, ice shedding analysis is performed on a quasi-3D, multi-step ice geometry accreted on the NREL 5MW reference wind turbine. A preliminary investigation is performed by including the presence of an ice protection system to decrease the adhesion surface of the ice on the blade. A reference test case with a simple geometry is used as verification for the correct implementation of the procedure.
Technical Paper

A Comprehensive Numerical Model for Numerical Simulation of Ice Accretion and Electro-Thermal Ice Protection System in Anti-icing and De-icing Mode, with an Ice Shedding Analysis

2023-06-15
2023-01-1463
This work presents a comprehensive numerical model for ice accretion and Ice Protection System (IPS) simulation over a 2D component, such as an airfoil. The model is based on the Myers model for ice accretion and extended to include the possibility of a heated substratum. Six different icing conditions that can occur during in-flight ice accretion with an Electro-Thermal Ice Protection System (ETIPS) activated are identified. Each condition presents one or more layers with a different water phase. Depending on the heat fluxes, there could be only liquid water, ice, or a combination of both on the substratum. The possible layers are the ice layer on the substratum, the running liquid film over ice or substratum, and the static liquid film between ice and substratum caused by ice melting. The last layer, which is always present, is the substratum. The physical model that describes the evolution of these layers is based on the Stefan problem. For each layer, one heat equation is solved.
Technical Paper

A Three-Dimensional Level-Set Front Tracking Technique for Automatic Multi-Step Simulations of In-Flight Ice Accretion

2023-06-15
2023-01-1467
This paper presents a novel fully-automatic remeshing procedure, based on the level-set method and Delaunay triangulation, to model three-dimensional boundary problems and generate a new conformal body-fitted mesh. The proposed methodology is applied to long-term in-flight ice accretion, which is characterized by the formation of extremely irregular ice shapes. Since ice accretion is coupled with the aerodynamic flow field, a multi-step procedure is implemented. The total icing exposure time is subdivided into smaller time steps, and at each time step a three-dimensional body-fitted mesh, suitable for the computation of the aerodynamic flow field around the updated geometry, is generated automatically. The methodology proposed can effectively deal with front intersections, as shown with a manufactured example.
Technical Paper

Investigation of the Influence of Aero-Thermal Non-equilibrium Conditions of an SLD Cloud on Airfoil Icing

2023-06-15
2023-01-1406
This study examines the impact of slip in aero-thermal conditions of supercooled large droplets (SLD) produced in an Icing Wind Tunnel (IWT) on the ice accretion characteristics. The study identifies potential biases in the SLD model development based on IWT data and numerical predictions that assume the SLD to be in aerothermal equilibrium with the IWT airflow. To obtain realistic temperature and velocity data for each droplet size class in the test section of the Braunschweig Icing Wind Tunnel (BIWT), a Lagrangian droplet tracking solver was used within a Monte Carlo framework. Results showed that SLDs experience considerable slips in velocity and temperature due to their higher inertia and short residence time in the Braunschweig IWT. Large droplets were found to be warmer and slower than the flow in the test section, with larger droplets experiencing larger aerothermal slips.
X