Refine Your Search

Topic

Search Results

Journal Article

1D Thermo-Fluid Dynamic Modeling of Reacting Flows inside Three-Way Catalytic Converters

2009-04-20
2009-01-1510
In this work a detailed model to simulate the transient behavior of catalytic converters is presented. The model is able to predict the unsteady and reacting flows in the exhaust ducts, by solving the system of conservation equations of mass, momentum, energy and transport of reacting chemical species. The en-gine and the intake system have not been included in the simulation, imposing the measured values of mass flow, gas temperature and chemical composition as a boundary condition at the inlet of the exhaust system. A detailed analysis of the diffusion stage triggering is proposed along with simplifications of the physics, finalized to the reduction of the calculation time. Submodels for water condensation and its following evaporation on the monolith surface have been taken into account as well as oxygen storage promoted by ceria oxides.
Journal Article

Removal of NOx from Diesel Exhausts: The New “Enhanced NH3-SCR” Reaction

2010-04-12
2010-01-1181
Ammonia/urea-SCR is a mature technology, applied worldwide for the control of NOx emissions in combustion exhausts from thermal power plants, cogeneration units, incinerators and stationary diesel engines and more recently also from mobile sources. However a greater DeNOx activity at low temperatures is desired in order to meet more and more restrictive legislations. In this paper we report transient and steady state data collected over commercial Fe-ZSM-5 and V₂O₅-WO₃/TiO₂ catalysts showing high NOx reduction efficiencies in the 200 - 350°C T-range when NO and ammonia react with nitrates, e.g., in the form of an aqueous solution of ammonium nitrate. Under such conditions a new reaction occurs, the so-called "Enhanced SCR" reaction, 2 NH₃ + 2 NO + NH₄NO₃ → 3 N₂ + 5 H₂O.
Technical Paper

Reversible Sulfur Poisoning of 3-way Catalyst linked with Oxygen Storage Mechanisms

2021-09-05
2021-24-0069
Even though the 3-way catalyst chemistry has been studied extensively in the literature, some performance aspects of practical relevance have not been fully explained. It is believed that the Oxygen Storage Capacity function of 3-way catalytic components dominates the behavior during stoichiometry transitions from lean to rich mode and vice versa whereas a number of mathematical models have been proposed to describe the dynamics of pollutant conversion. Previous studies have suggested a strong impact of Sulfur on the pollutant conversion after a lean to rich transition, which has not been adequately explained and modelled. Lean to rich transitions are highly relevant to catalyst ‘purging’ needed after exposure to high O2 levels (e.g. after fuel cut-offs). This work presents engine test measurements with an engine-aged catalyst that highlight the negative impact of Sulfur on pollutant conversion after a lean to rich transition.
Technical Paper

Numerical Assessment of an After-Treatment System Equipped with a Burner to Speed-Up the Light-Off during Engine Cold Start

2021-09-05
2021-24-0089
In the next years, the upcoming emission legislations are expected to introduce further restrictions on the admittable level of pollutants from vehicles measured on homologation cycles and real drive tests. In this context, the strict control of pollutant emissions at the cold start will become a crucial point to comply with the new regulation standards. This will necessarily require the implementation of novel strategies to speed-up the light-off of the reactions occurring in the after-treatment system, since the cold start conditions are the most critical one for cumulative emissions. Among the different possible technological solutions, this paper focuses on the evaluation of the potential of a burner system, which is activated before the engine start. The hypothetical burner exploits the lean combustion of an air-gasoline mixture to generate a high temperature gas stream which is directed to the catalyst section promoting a fast heating of the substrate.
Technical Paper

Modeling of Three Way Catalyst Behavior Under Steady and Transient Operations in a Stoichiometric Natural Gas Fueled Engine

2021-09-05
2021-24-0074
Methane abatement in the exhaust gas of natural gas engines is much more challenging in respect to the oxidation of other higher order hydrocarbons. Under steady state λ sweep, the methane conversion efficiency is high at exact stoichiometric, and decreases steeply under both slightly rich and slightly lean conditions. Transient lean to rich transitions can improve methane conversion at the rich side. Previous experimental work has attributed the enhanced methane conversion to activation of methane steam reforming. The steam reforming rate, however, attenuates over time and the methane conversion rate gradually converges to the low steady state values. In this work, a reactor model is established to predict steady state and transient transition characteristics of a three-way catalyst (TWC) mounted in the exhaust of a natural gas heavy-duty engine.
Journal Article

Design of Catalytic Devices by Means of Genetic Algorithm: Comparison Between Open-Cell Foam and Honeycomb Type Substrates

2016-04-05
2016-01-0965
Metallic foams or sponges are materials with a cell structure suitable for many industrial applications, such as reformers, heat catalytic converters, etc. The success of these materials is due to the combination of various characteristics such as mechanical strength, low density, high specific surface, good thermal exchange properties, low flow resistance and sound absorption. Different materials and manufacturing processes produce different type of structure and properties for various applications. In this work a genetic algorithm has been developed and applied to support the design of catalytic devices. In particular, two substrates were considered, namely the traditional honeycomb and an alternative open-cell foam type. CFD simulations of pressure losses and literature based correlations for the heat and mass transfer were used to support the genetic algorithm in finding the best compromise between flow resistance and pollutant abatement.
Technical Paper

Numerical Optimization of a SCR System Based on the Injection of Pure Gaseous Ammonia for the NOx Reduction in Light-Duty Diesel Engines

2020-04-14
2020-01-0356
Selective Catalytic Reduction (SCR) systems are nowadays widely applied for the reduction of NOx emitted from Diesel engines. The typical process is based on the injection of aqueous urea in the exhaust gases before the SCR catalyst, which determines the production of the ammonia needed for the catalytic reduction of NOx. However, this technology is affected by two main limitations: a) the evaporation of the urea water solution (UWS) requires a sufficiently high temperature of the exhaust gases and b) the formation of solid deposits during the UWS evaporation is a frequent phenomenon which compromise the correct operation of the system. In this context, to overcome these issues, a technology based on the injection of gaseous ammonia has been recently proposed: in this case, ammonia is stored at the solid state in a cartridge containing a Strontium Chloride salt and it is desorbed by means of electrical heating.
Journal Article

The NH3 Inhibition Effect in the Standard SCR Reaction over a Commercial Fe-zeolite Catalyst for Diesel Exhaust Aftertreatment: An Experimental and Modeling Study

2011-04-12
2011-01-1319
Transient and steady-state kinetic data are herein presented to analyze the inhibiting effect of ammonia on the NH₃-SCR of NO at low temperatures over a Fe-zeolite commercial catalyst for vehicles. It is shown that in SCR converter models a rate expression accounting for NH₃ inhibition of the Standard SCR reaction is needed in order to predict the specific dynamics observed both in lab-scale and in engine test bench runs upon switching on and off the ammonia feed. Two redox, dual site kinetic models are developed which ascribe such inhibition to the spill-over of ammonia from its adsorption sites, associated with the zeolite, to the redox sites, associated with the Fe promoter. Better agreement both with lab-scale intrinsic kinetic runs and with engine test-bench data, particularly during transients associated with dosing of ammonia to the SCR catalyst, is obtained assuming slow migration of NH₃ between the two sites.
Technical Paper

Metal Foam Substrate for DOC and DPF Applications

2007-04-16
2007-01-0659
A new metal foam material for diesel particulate filtration, trademarked as INCOFOAM® HighTemp, was recently presented. Extensive tests showed the potential of achieving filtration efficiencies of the order of 85% or more at low pressure drop using a radial flow design concept with graded foam porosity. By applying a catalytic washcoat, the foam exhibits enhanced gas mixing and thus higher conversion efficiencies at high space velocities. In addition, due to an excellent soot-catalyst contact, the washcoated foam exhibited high catalytic regeneration rates. The present paper focuses on a novel “cross-flow” design concept for a better filtration/pressure drop trade-off as well as application of the foam as an oxidation catalyst substrate. The experimental testing starts from small-scale reactors and proceeds to real exhaust testing on the engine bench as well as vehicle tests on the chassis dynamometer and on-road testing.
Technical Paper

Model-based Optimization of Catalyst Zoning in Diesel Particulate Filters

2008-04-14
2008-01-0445
Catalyzed wall-flow particulate filters are increasingly applied in diesel exhaust after-treatment for multiple purposes, including low-temperature catalytic regeneration, CO and hydrocarbon conversion, as well as exothermic heat generation during forced regeneration. In order to optimize Precious Metals usage, it may be advantageous to apply the catalytic coating non-uniformly in the DPF, a technology referred to as “catalyst zoning”. In order to simulate the behavior of such a filter, one has to consider coupled transport-reaction modeling. In this work, a previously developed model is calibrated versus experimental data obtained with full-scale catalyzed filters on the engine dynamometer. In a next step, the model is validated under a variety of operating conditions using engine experiments with zoned filters. The performance of the zoned catalyst is analyzed by examining the transient temperature and species profiles in the inlet and outlet channels.
Technical Paper

Development of Metal Foam Based Aftertreatment System on a Diesel Passenger Car

2008-04-14
2008-01-0619
An alternative metal foam substrate for exhaust aftertreatment applications has been recently presented and characterized. The present paper focuses on the potential of the metal foam technology as an efficient DOC and CDPF substrates on real-world conditions. The target platform is a mid-size passenger car and the methodology includes both modeling and experiments. The experimental testing starts from small-scale reactor characterization of the basic heat/mass transfer properties and chemical kinetics. The results show that the foam structure exhibits excellent mass-transport properties offering possibilities for precious metal and catalyst volume savings for oxidation catalyst applications. These results are also used to calibrate an advanced 2-dimensional model which is able to predict the transient filtration and reaction phenomena in axial and radial flow systems.
Technical Paper

Optimization Methodologies for DPF Substrate-catalyst Combinations

2009-04-20
2009-01-0291
As the Diesel Particulate Filter (DPF) technology is nowadays established, research is currently focusing on meeting the emission and durability requirements by proper system design. This paper focuses on the optimum combination between the catalytic coating and substrate structural properties using experimental and simulation methodologies. The application of these methodologies will be illustrated for the case of SiC substrates coated with innovative sol-gel coatings. Coated samples are characterized versus their uncoated counterparts. Multi-dimensional DOC and DPF simulation models are used to study several effects parametrically and increase our understanding on the governing phenomena. The comparative analysis of DOC/DPF systems covers filtration – pressure drop characteristics, CO/HC/NO oxidation performance, effect of washcoat amount and catalyst dispersion on oxidation activity and finally passive regeneration performance.
Technical Paper

CFD Investigation of the Impact of Electrical Heating on the Light-off of a Diesel Oxidation Catalyst

2018-04-03
2018-01-0961
In the last years, as a response to the more and more restrictive emission legislation, new devices (SRC, DOC, NOx-trap, DPF) have been progressively introduced as standard components of modern after-treatment system for Diesel engines. In addition, the adoption of electrical heating is nowadays regarded with interest as an effective solution to promote the light-off of the catalyst at low temperature, especially at the start-up of the engine and during the low load operation of the engine typical of the urban drive. In this work, a state-of-the-art 48 V electrical heated catalyst is considered, in order to investigate its effect in increasing the abatement efficiency of a standard DOC. The electrical heating device considered is based on a metallic support, arranged in a spiral layout, and it is heated by the Joule effect due to the passage of the electrical current.
Technical Paper

Modeling the Interactions Of Soot and SCR Reactions in Advanced DPF Technologies with Non-homogeneous Wall Structure

2012-04-16
2012-01-1298
The pressure for compact and efficient deNO systems has led to increased interest of incorporating SCR coatings in the DPF walls. This technology could be very attractive especially if high amounts of washcoat loadings could be impregnated in the DPF porous walls, which is only possible with high porosity filters. To counterbalance the filtration and backpressure drawbacks from such high porosity applications, the layered wall technology has already been proposed towards minimizing soot penetration in the wall and maximizing filtration efficiency. In order to deal with the understanding of the complex interactions in such advanced systems and assist their design optimization, this paper presents an advanced modeling framework and selected results from simulation studies trying to illustrate the governing phenomena affecting deNO performance and passive DPF regeneration in the above combined systems.
Technical Paper

A Low Temperature Pathway Operating the Reduction of Stored Nitrates in Pt-Ba/Al2O3 Lean NOx Trap Systems

2006-04-03
2006-01-1368
In this paper the low temperature reduction process of nitrates stored at high temperatures over model Pt-Ba/Al2O3 LNT catalysts using both H2 and C3H6 is analyzed. The results indicate that over the Pt-Ba/Al2O3 catalyst the reduction of stored NOx with both H2 and C3H6 occurs at temperature below those corresponding to their thermal stability. Accordingly, the reduction process occurs through a Pt-catalyzed surface reaction, which does not involve, as a preliminary step, the thermal decomposition of the adsorbed NOx species. The occurrence of such a pathway also requires the co-presence of the storage element and of the noble metal on the same support.
Technical Paper

Filtration and Regeneration Performance of a Catalyzed Metal Foam Particulate Filter

2006-04-03
2006-01-1524
The objective of this study is to present a particulate filter concept, based on a new porous material: INCOFOAM® HighTemp, a Ni-based superalloy foam. The paper examines the filtration and pressure drop characteristics as well as the regeneration performance of different filter configurations, based on experimental data and modeling. A number of different foam structures with variable pore characteristics are studied. The experimental testing covers flow and pressure drop behavior with air and exhaust gas, filtration efficiency measurements as function of particle size and regeneration rate measurements. The testing starts from mini-scale reactors and proceeds to real exhaust testing on the engine bench as well as vehicle tests on the chassis dynamometer and on-road. In parallel, a previously developed mathematical model is applied to study and understand the filtration and pressure drop mechanisms in the case of clean and soot loaded filters.
Technical Paper

Transient Modeling of 3-Way Catalytic Converters

1994-03-01
940934
The modeling of transient phenomena occurring inside an automotive 3-way catalytic converter poses a significant challenge to the emissions control engineer. Since the significant progress that has been observed with steady-state models cannot be directly exploited in this direction, it is necessary to develop a fully transient model and computer code incorporating dynamic behaviour of the three way catalytic converter in a relatively simple and effective way. The Laboratory of Applied Thermodynamics (LAT), Aristotle University Thessaloniki, is cooperating with the Engine Direction of FIAT Research Center, in the development of a computer code fulfilling these objectives, within the framework of an EEC Brite EuRam cost shared project. The CRF and LAT modeling approaches, along with the underlying philosophy and experimental work, are presented in this paper.
Technical Paper

Computer Aided Assessment of Catalyst Ageing Cycles

1995-02-01
950934
In view of recent and future US and european regulations the design optimization of 3-way catalytic converters (3WCC) should also account for catalyst durability. The purpose of this paper is to extend the authors' approach for 3WCC modeling and evaluation in the direction of covering some aspects of ageing behavior. After a brief examination of the commonly accepted ageing mechanisms, a new methodology for the assessment of catalyst durability is formulated. This methodology takes into account the effect of thermal loading, high-temperature oxidation and poisoning of the catalyst. Based on the approach presented, along with the 3WCC and other related models and computer codes already in-use by the authors, a comparative assesment of engine bench ageing cycles may be computationally supported. Correlation of vehicle ageing cycles with engine bench cycles may also be accomplished as illustrated by a case study.
Technical Paper

Development and Experimental Validation of a NOx Trap Model for Diesel Exhaust

2006-04-03
2006-01-0471
This paper presents a mathematical model for the simulation of NOx traps during the storage and the regeneration phases. The objective is to validate the model under realistic exhaust gas conditions during NOx storage and release phases. The model is based on a previous modeling platform developed by Aristotle University which simulates the behavior of 3-way catalysts. The previous model is extended to include the additional reactions taking place on a NOx trap, with particular emphasis on the calculation of thermodynamic equilibrium effects. Moreover, the model includes the necessary reactions to simulate catalyst sulfation and de-sulfation processes. In parallel, a set of measurements are conducted under well controlled conditions with real diesel exhaust to study the storage and release phenomena under various operating conditions. The experimental data are used to calibrate the reaction kinetics and validate the model.
Technical Paper

A Quasi-3D Model for the Simulation of the Unsteady Flows in I.C. Engine Pipe Systems

2012-04-16
2012-01-0675
Increasing demands on the capabilities of engine simulation and the ability to accurately predict both performance and acoustics has lead to the development of several numerical tools to help engine manufacturers during the prototyping stage. The aid of CFD tools (3D and 1D) can remarkably reduce the duration and the costs of this stage. The need of achieving good accuracy, along with acceptable computational runtime, has given the spur to the development of a geometry based quasi-3D approach. This is designed to model the acoustics and the fluid dynamics of both intake and exhaust system components used in internal combustion engines. Models of components are built using a network of quasi-3D cells based primarily on the geometry of the system. The solution procedure is based on an explicitly time marching staggered grid approach making use of a flux limiter to prevent numerical instabilities.
X