Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Multi-Dimensional Modeling of the Soot Deposition Mechanism in Diesel Particulate Filters

2008-04-14
2008-01-0444
A computational, three-dimensional approach to investigate the behavior of diesel soot particles in the micro-channels of wall-flow Diesel Particulate Filters is presented. The KIVA3V CFD code, already extended to solve the 2D conservation equations for porous media materials [1], has been enhanced to solve in 2-D and 3-D the governing equations for reacting and compressible flows through porous media in non axes-symmetric geometries. With respect to previous work [1], a different mathematical approach has been followed in the implementation of the numerical solver for porous media, in order to achieve a faster convergency as source terms were added to the governing equations. The Darcy pressure drop has been included in the Navier-Stokes equations and the energy equation has been extended to account for the thermal exchange between the gas flow and the porous wall.
Journal Article

The 3Dcell Approach for the Acoustic Modeling of After-Treatment Devices

2011-09-11
2011-24-0215
In the last decades the continuously tightening limitations on pollutant emissions has led to an extensive adoption of after-treatment devices on the exhaust systems of modern internal combustion engines. While these devices are primarily introduced for reducing and controlling the emissions, they also play an important role influencing the wave motion inside the exhaust system and so affecting the acoustics and the performances of the engine. In this paper a novel approach is proposed for the modeling of two after-treatment devices: the catalyst and the Diesel Particulate Filter. The models are based on a fast quasi-3D approach, named 3Dcell, originally developed by the authors for the acoustic modeling of silencers. This approach allows to model the wave motion by solving the momentum equation along the three directions.
Technical Paper

Development of a Multi-Dimensional Parallel Solver for Full-Scale DPF Modeling in OpenFOAM®

2009-06-15
2009-01-1965
A new fast and efficient parallel numerical solver for reacting and compressible flows through porous media has been developed in the OpenFOAM® (Open Field Operation and Manipulation) CFD Toolbox. With respect to the macroscopic model for porous media originally available in OpenFOAM®, a different mathematical approach has been followed: the new implemented solver makes use of the physical normal components resulting from the velocity expansion in the unit orthogonal vector basis to compute the Darcy pressure drop across the porous medium. Also, an additional sink term to account for the increased flow friction over the porous wall has been included into the momentum equation. In the new solver, the pressure correction equation is still able to achieve a faster convergency at very low permeability of the medium, also when it is associated with grid non-orthogonality.
Technical Paper

A Modeling Study of Soot and De-NOx Reaction Phenomena in SCRF Systems

2011-06-09
2011-37-0031
The development of thermally durable zeolite NH3/Urea-SCR formulations coupled with that of high porosity filters substrates has opened the way to integrate PM and NOx control into a single device, namely an SCR-coated Diesel Particulate Filter (SCRF). A few experimental works are already present in the literature regarding SCRF systems, mainly addressing the DeNOx performances of the system (in both presence and absence of soot) under both steady state and transient conditions. The purpose of the present work is to perform a simulation study focused on phenomena which are expected to play key roles in SCRF systems, such as coupling of reaction and diffusion phenomena, soot effect on DeNOx activity, SCR coating effect on soot regeneration and filtration efficiency and competition between soot oxidation and DeNOx processes involving NO2.
Technical Paper

Effect of Biodiesel Blends on the Aging of EURO VI Aftertreatment System

2021-03-26
2020-36-0263
In Brazil, the introduction of high biodiesel blends has been defined by standard CNPE no 16 of 2018, which stablished the latest chronogram for compulsory biodiesel incorporation to all diesel fuel commercialized nationally, from 11% v/v in 2019 to 15% v/v in 2023, and up to B20 in case of captive fleets. Nevertheless, with the adoption of more stringent emission standards in Brazil, concerns arise from the unrestricted use of higher biodiesel blends, especially regarding the assurance of Heavy-Duty Diesel (HDD) emissions aftertreatment systems correct operation and of fulfillment of national emissions requirements defined by PROCONVE. Considering the current emission standards (PROCONVE P7, equivalent to EURO V), such concerns already take place and become critical with the perspective of PROCONVE P8 (EURO VI) implementation, in 2022 for new models and 2023 for all commercialized vehicles, as defined by CONAMA Resolution no 490/2018.
Journal Article

Pressure Drop of Particulate Filters and Correlation with the Deposited Soot for Heavy-Duty Engines

2019-09-09
2019-24-0151
Particulate filters are a widely used emission control device on heavy-duty diesel engines. The accumulation of particulate matter, mostly consisting of soot, inside the filter results in increased filter pressure-drop (backpressure). This increased backpressure has been used by the on-board control systems as trigger for regeneration procedures, which aim to actively oxidize the accumulated soot. However, it is known that passive soot oxidation during normal operation affects the correlation between backpressure and the deposited soot mass in filter. Therefore, the backpressure alone cannot be a reliable trigger for regeneration. In this work we highlight operating conditions with very poor correlation between backpressure and accumulated soot mass in filter and evaluate the possible root causes. Experiments with several heavy-duty diesel engines and particulate filters were conducted on engine test bench.
X