Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Numerical Analysis of the Torque Converter Stator Blade by the Boundary Element Method

1992-09-01
921692
The improvement of the torque converter performance necessitates an optimized design of the torque converter stator blade on the basis of a full understanding of the internal flow conditions. However, it is difficult to analyze the flow experimentally or theoretically because the three elements (a pump, a turbine, and a stator) rotate at different speeds and the flow circuit and the blade shapes are complex. Enough explication of the internal flow has not yet been made. This research has developed a new method of calculating the torque converter performance by taking the stator blade profile into consideration. The internal flow through the torque converter stator can be treated as a two-dimensional flow, and here the flow was analyzed as a potential flow. The analysis of the torque converter stator blade was made as follows.
Technical Paper

Analysis of Sulfur-Related White Smoke Emissions from DPF System

2015-09-01
2015-01-2023
In a Diesel engine with a Diesel particulate filter (DPF) system, high-sulfur fuel causes white smoke containing odorous and harmful pollutants during DPF regeneration. This study investigates the conditions and mechanisms of sulfur-related white smoke generation. Engine and vehicle tests found that sulfur compounds emitted from the engine accumulated on the catalysts in the DPF system and were emitted as white smoke during DPF regeneration. The white smoke was observed when the catalyst temperature was more than 450°C, under conditions such as the early stage of DPF regeneration. Model gas tests were conducted to clarify the mechanism of the white smoke. It was found that SO2 emitted from the engine was oxidized to SO3 on the catalyst, which was then mainly absorbed on the oxidation catalyst support (Al2O3). Then, the absorbed SO3 was desorbed and converted into white smoke.
Technical Paper

Multidisciplinary Design Method for Off-Road Vehicles Using Bayesian Active Learning

2024-04-09
2024-01-2595
When developing an off-road vehicle, it is essential to create excellent drivability that enables the vehicle to be driven on all surfaces while ensuring passenger comfort. Since durability is another indispensable performance aspect for these vehicles, the development method must be capable of considering a high-level combination of a wide range of performance targets. This paper proposes a method to identify the region in which each performance aspect is realized through a complex domain combination problem. The proposed method is helpful in the initial design stage when the detailed specifications of the target vehicle are not determined because it is capable of considering both the specifications and usage method of the target vehicle, such as the selection of road profiles and driving speeds as design variables. The proposed method has the advantage of enabling efficient concurrent studies to search for feasible regions.
X