Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

FlexRay - The Communication System for Advanced Automotive Control Systems

2001-03-05
2001-01-0676
BMW, DaimlerChrysler, Motorola and Philips present their joint development activity related to the FlexRay communication system that is intended for distributed applications in vehicles. The designated applications for powertrain and chassis control place requirements in terms of availability, reliability and data bandwidth that cannot be met by any product currently available on the market under the testing conditions encountered in an automobile. A short look back on events so far is followed by a description of the protocol and its first implementation as an integrated circuit, as well as its incorporation into a complete tool environment.
Technical Paper

Active Body Control (ABC) The DaimlerChrysler Active Suspension and Damping System

2002-10-21
2002-21-0054
Suspension systems have a major effect on the handling characteristics of a vehicle, particularly ride comfort and handling safety, and thus substantially determine its character. Their increasing significance is reflected by the greater value that ever more demanding customers attribute to the properties ride comfort and handling safety. Now that the potential of conventional, passive systems is largely exhausted, adaptive and active systems open up new possibilities, e.g.: the suppression of rolling and pitching movements, handling and ride height independent of load, handling characteristics and ride height adaptable to situation and customer requirement. The DaimlerChrysler active suspension and damping system (Active Body Control – ABC) manages to resolve the conflict of aims between handling safety and ride comfort which afflicts conventional fixed suspension systems, and as a result offers greater freedom of layout whilst enabling optimization of both target criteria.
Technical Paper

Strategies to Reduce HC-Emissions During the Cold Starting of a Port Fuel Injected Gasoline Engine

2003-03-03
2003-01-0627
In view of tight emission standards, injection strategies to reduce raw HC-emissions during the cold starting of port fuel injected engines are evaluated in this study. The relevance of spray targeting and atomization is outlined in the first part of this paper. The foundation and performance of different injector concepts with respect to spray characteristics are discussed. Laboratory experiments demonstrate that concepts relying on auxiliary energy, such as air-assistance, fuel heating and injection at elevated system pressures, are capable of producing spray droplet sizes in the SMD-range of 25μm. For future injection strategies aimed at the compliance of SULEV emission levels, this target value is considered to be essential. In the second part of this paper, emission tests of selected injector concepts are carried out using a V6-3.2I ULEV engine operated both in a vehicle and on a test bench.
Technical Paper

Powernet Simulation as a Tool for the Development of a Highly Reliable Energy Supply for Safety Relevant Control Systems in X-By-Wire Vessels in the EU SPARC Project

2006-04-03
2006-01-0115
The EU SPARC Project (Secure Propelled Vehicle with Advanced Redundant Control) has developed a new system architecture that enables effective application of driver assisted systems in an X-by-wire powertrain. A major challenge in the conception of such a system is development of a reliable electrical energy supply. A simulation is the most important tool for enabling the fundamental aspects to work, as for example, a dimensioning of the powernet. This article explains our approach in this SPARC simulation. We provide suggestions through examples of how to find simulation solutions for powernet dimensioning, as well as for the conception and validation of energy management strategies.
Technical Paper

Current Status and Prospects for Gasoline Engine Emission Control Technology - Paving the Way for Minimal Emissions

2000-03-06
2000-01-0856
The background for the development activities of the motor vehicle industry is strongly influenced by lawmakers, with engine development, in particular, coming under increasing pressure from the requirements of emissions legislation. Demands for CO2 reduction and thus corresponding savings in consumption contrast with regulations which call for compliance with extremely low emission levels, featuring the extreme of zero tailpipe emissions, and alternative low emission levels which make accurate measurement a problem even with current analysis technology. An example of such requirements are the SULEV limits of California law. These standards have given rise to a wide variety of emission control concepts, each of which, however, has certain limitations in its application. In the context of this general setting, the paper shows that the phase directly subsequent to cold start should be focused upon if these ambitious targets are to be reached.
Technical Paper

Studies on Enhanced CVS Technology to Achieve SULEV Certification

2002-03-04
2002-01-0048
For the measurement of exhaust emissions, Constant Volume Sampling (CVS) technology is recommended by legislation and has proven its practical capability in the past. However, the introduction of new low emission standards has raised questions regarding the accuracy and variability of the CVS system when measuring very low emission levels. This paper will show that CVS has the potential to achieve sufficient precision for certification of SULEV concepts. Thus, there is no need for the introduction of new test methods involving high cost. An analysis of the CVS basic equations indicates the importance of the Dilution Factor (DF) for calculating true mass emissions. A test series will demonstrate that, by adjusting the dilution and using state of the art analyzers, the consistency of exhaust results is comparable with those of LEV concepts, measured with conventional CVS systems and former standard analyzers.
Technical Paper

Utilization of Advanced Three-Way Catalyst Formulations on Ceramic Ultra Thin Wall Substrates for Future Legislation

2002-03-04
2002-01-0349
The LEV II and SULEV/PZEV emission standards legislated by the US EPA and the Californian ARB will require continuous reduction in the vehicles' emission over the next several years. Similar requirements are under discussion in the European Union (EU) in the EU Stage V program. These future emission standards will require a more efficient after treatment device that exhibits high activity and excellent durabilty over an extended lifetime. The present study summarizes the findings of a joint development program targeting such demanding future emission challenges, which can only be met by a close and intensive co-operation of the individual expert teams. The use of active systems, e.g. HC-adsorber or electrically heated light-off catalysts, was not considered in this study. The following parameters were investigated in detail: The development of a high-tech three-way catalyst technology is described being tailored for applications on ultra thin wall ceramic substrates (UTWS).
X