Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Heavy-Duty OBD Regulation Status

2012-02-01
The introduction of hybrid and plug-in hybrid electric vehicles has resulted in the introduction of battery systems into the realm of OBD II diagnostics. After a high-level overview of battery systems, general battery system fault responses are discussed, as well as which of these might be OBD faults. The alignment of the OBD regulations and DTC assignment in systems with large numbers of similar/identical components is discussed, along with apparent conflicts between existing OBD regulations and the physical realities of battery systems in HEVs and PHEVs. Presenter Dyche Anderson, Ford Motor Co.
Journal Article

Achieving an 80% GHG Reduction by 2050 in California's Passenger Vehicle Fleet: Implications for the ZEV Regulation

2010-10-19
2010-01-2306
In recognizing the potential for large, damaging impacts from climate change, California enacted Executive Order S-03-05, requiring a reduction in statewide greenhouse gas (GHG) emissions to 80% below 1990 levels by 2050. Given that the transportation light-duty vehicle (LDV) segment accounts for 28% of the state's GHG emissions today, it will be difficult to meet the 2050 goal unless a portfolio of near-zero carbon transportation solutions is pursued. Because it takes decades for a new propulsion system to capture a large fraction of the passenger vehicle market due to vehicle fleet turn-over rates, it is important to accelerate the introduction of these alternatives to ensure markets enter into early commercial volumes (10,000s) between 2015 and 2020. This report summarizes the results and conclusions of a modeling exercise that simulated GHG emissions from the LDV sector to 2050 in California.
Journal Article

Evaluation of PM Measurement Precision and the Quivalency of the Single and Three Filter Sampling Methods for LEV III FTP Standards

2016-01-15
2015-01-9045
Present motor vehicle particulate matter (PM) emission measurement regulations (Code of Federal Regulations (CFR) 40 Part 1065, 1066) require gravimetric determination of PM mass collected onto filter media from dilute exhaust. To improve the current sampling and measurement procedures for TIER 3 PM emissions standard of 3 mg/mile, CFR part 1066 adopted five alternative PM sampling options. One option of great interest is sampling the entire test using a single flow-weighed filter rather than the conventional three-filter (one filter per test phase) approach. The single filter method could lessen the time needed for gravimetric determination by reducing the quantity of filters used for a test and possibly reduce the uncertainty in gravimetric measurements, particularly at sub 1 mg/mile PM levels. This study evaluates the single filter and, to a limited extent, the 2-filter alternatives adopted in 40 CFR Part 1066.
Journal Article

Determination of the PEMS Measurement Allowance for PM Emissions Regulated Under the Heavy-Duty Diesel Engine In-Use Testing Program

2012-04-16
2012-01-1250
This paper summarizes the Heavy-Duty In-Use Testing (HDUIT) measurement allowance program for Particulate Matter Portable Emissions Measurement Systems (PM-PEMS). The measurement allowance program was designed to determine the incremental error between PM measurements using the laboratory constant volume sampler (CVS) filter method and in-use testing with a PEMS. Two independent PM-PEMS that included the Sensors Portable Particulate Measuring Device (PPMD) and the Horiba Transient Particulate Matter (TRPM) were used in this program. An additional instrument that included the AVL Micro Soot Sensor (MSS) was used in conjunction with the Sensors PPMD to be considered a PM-PEMS. A series of steady state and transient tests were performed in a 40 CFR Part 1065 compliant engine dynamometer test cell using a 2007 on-highway heavy-duty diesel engine to quantify the accuracy and precision of the PEMS in comparison with the CVS filter-based method.
Technical Paper

The Effect of Gasoline Aromatics Content on Exhaust Emissions: A Cooperative Test Program

1990-10-01
902073
A cooperative vehicle exhaust emissions test program was conducted by the California Air Resources Board and Chevron Research and Technology Company. The focus of the program was to determine the effect of aromatics content on nitrogen oxides (NOx) emissions. The program consisted of testing nine vehicles on three different fuels. The fuels ranged in aromatics content from 10% to 30%.* Other fuel properties were held as constant as possible. The tests were conducted in two different laboratories. In addition to the measurement of criteria emissions (hydrocarbons, carbon monoxide, and NOx), some of the hydrocarbon emissions were speciated and a reactivity of the exhaust was calculated. Only slight changes in the exhaust emissions and reactivity were observed for a change in aromatics content from 30% to 10%.
Technical Paper

California's Heavy-Duty Vehicle Smoke and Tampering Inspection Program

1991-08-01
911669
Emissions from heavy-duty vehicles are a major contributor to California's air quality problems. Emissions from these vehicles account for approximately 30% of the nitrogen oxide and 75% of the particulate matter emissions from the entire on-road vehicle fleet. Additionally, excessive exhaust smoke from in-use heavy-duty diesel vehicles is a target of numerous public complaints. In response to these concerns, California has adopted an in-use Heavy-Duty Vehicle Smoke and Tampering Inspection Program (HDVIP) designed to significantly reduce emissions from these vehicles. Pending promulgation of HDVIP regulations, vehicles falling prescribed test procedures and emission standards will be issued citations. These citations mandate expedient repair of the vehicle and carry civil penalties ranging from $300 to $1800. Failure to clear citations can result in the vehicle being removed from service.
Technical Paper

Overview of On-Board Diagnostic Systems Used on 1991 California Vehicles

1991-10-01
912433
The California Air Resources Board requires that new California vehicles be equipped with on-board diagnostic (OBD) systems. Starting with the 1988 models, these systems were required on new passenger cars, light-duty trucks and medium-duty vehicles equipped with three-way catalysts and feed-back fuel controls. The purpose of the OBD system is to expedite the proper repair of emission-related malfunctions and, thus, reduce vehicle emissions. When malfunctons are detected, a malfunction indicator light (MIL) mounted in the dash panel illuminates cautioning the vehicle operator that a repair is needed. Also, a fault code is stored in the OBD computer memory. When the vehicle is brought to a repair facility, the fault code provides the mechanic with the likely areas of malfunction for repairing the vehicle. After the repair is performed, the fault code is cleared, the MIL is extinguished, and the OBD system will subsequently confirm if the proper repair has been performed.
Journal Article

Particulate Emissions for LEV II Light-Duty Gasoline Direct Injection Vehicles

2012-04-16
2012-01-0442
Since the mid-1990s, light-duty vehicles equipped with gasoline direct injection (GDI) engines have been added to the vehicle fleet in increasing numbers. Compared to conventional port fuel injection (PFI) engines, GDI engines provide higher power output for the same size engine, higher fuel efficiency, and lower carbon dioxide (CO₂) emissions. Due to the paucity of particulate matter (PM) emission data for light-duty gasoline vehicles in general and the increasing interest in these emissions relative to climate and air quality concerns, it is important to investigate PM emissions from current-generation GDI technologies. In this study, nine 2007-2010 light-duty GDI vehicles equipped with either wall-guided or spray-guided fuel injection systems were tested using California commercial gasoline fuel containing six percent ethanol by volume. Criteria pollutants including gaseous and PM emissions were measured over the Federal Test Procedure (FTP) transient test cycle.
Journal Article

Evaluation of the Impacts of Biofuels on Emissions for a California Certified Diesel Fuel from Heavy-Duty Engines

2013-04-08
2013-01-1138
The impact of biodiesel and new generation biofuels on emissions from heavy-duty diesel engines was investigated using a California Air Resources Board (CARB) certified diesel fuel as a base fuel. This study was performed on two heavy-duty diesel engines, a 2006 engine and a diesel particle filter (DPF) equipped 2007 engine, on an engine dynamometer over four different test cycles. Emissions from soy-based and animal-based biodiesel, renewable diesel fuel, and gas-to-liquid (GTL) diesel fuel were evaluated at blend levels ranging from 5 to 100%. Consistent with previous studies, particulate matter (PM), hydrocarbons (HC), and carbon monoxide (CO) emissions generally showed increasing reductions with increasing biodiesel and renewable/GTL diesel fuel blend levels for the non-DPF equipped engine. The levels of these reductions were generally comparable to those found in previous studies performed using more typical Federal diesel fuels.
Technical Paper

NVH Refinement of Diesel Powered Sedans with Special Emphasis on Diesel Clatter Noise and Powertrain Harshness

2007-05-15
2007-01-2378
NVH refinement of passenger vehicles is crucial to customer acceptance of contemporary vehicles. This paper describes the vehicle NVH development process, with specific examples from a Diesel sedan application that was derived from gasoline engine-based vehicle architecture. Using an early prototype Diesel vehicle as a starting point, this paper examines the application of a Vehicle Interior Noise Simulation (VINS) technique in the development process. Accordingly, structureborne and airborne noise shares are analyzed in the time-domain under both steady-state and transient test conditions. The results are used to drive countermeasure development to address structureborne and airborne noise refinement. Examples are provided to highlight the refinement process for “Diesel knocking” under idle as well as transient test conditions. Specifically, the application of VINS to understanding the influence of high frequency dynamic stiffness of hydro-mounts on Diesel clatter noise is examined.
Technical Paper

A New Method for Obtaining FRF of a Structure in Area Where Impact Hammer Cannot Reach

2007-05-15
2007-01-2385
The Frequency Response Function (FRF) is a fundamental component to identifying the dynamic characteristics of a system. FRF's have a significant impact on modal analysis and root cause analysis of NVH issues. In most cases the FRF can be easily measured, but there are instances when the measurement is unobtainable due to spatial constraints. This paper outlines a simple experimental method for obtaining a high quality input-output FRF of a structure in areas where an impact hammer can not reach during impact testing. Traditionally, the FRF in such an area is obtained by using a load cell extender with a hammer impact excitation. A common problem with this device is a double hit, that yields unacceptable results.
Technical Paper

Tailor-Welded Aluminum Blanks for Liftgate Inner

2007-04-16
2007-01-0421
Tailor welded steel blanks have long been applied in stamping of automotive parts such as door inner, b-pillar, rail, sill inner and liftgate inner, etc. However, there are few known tailor welded aluminum blanks in production. Traditional laser welding equipment simply does not have the capability to weld aluminum since aluminum has much higher reflectivity than steel. Welding quality is another issue since aluminum is highly susceptible to pin holes and undercut which leads to deterioration in formability. In addition, high amount of springback for aluminum panels can result in dimension control problem during assembly. A tailor-welded aluminum blank can help reducing dimension variability by reducing the need for assembly. In this paper, application of friction stir and plasma arc welded blanks on a liftgate inner will be discussed.
Technical Paper

Optimization of Head Impact Waveform to Minimize HIC

2007-04-16
2007-01-0759
To mitigate head impact injuries of vehicle occupants in impact accidents, the FMVSS 201 requires padding of vehicle interior so that under the free-moving-head-form impact, the head injury criterion (HIC) is below the limit. More recently, pedestrian head impact on the vehicle bonnet has been a subject being studied and regulated as requirements to the automobile manufacturers. Over the years, the square wave has been considered as the best waveform for head impacts, although it is impractical to achieve. This paper revisits the head impact topic and challenges the optimality of aiming at the square waveform. It studies several different simple waveforms, with the objective to achieve minimal HIC or minimal crush space required in head-form impacts. With that it is found that many other waveforms can be more efficient and more practical than the square wave, especially for the pedestrian impact.
Technical Paper

Detection of Gasoline Vehicles with Gross PM Emissions

2007-04-16
2007-01-1113
Light duty gasoline vehicles (LDGV) are estimated to contribute 40% of the total on-road mobile source tailpipe emissions of particulate matter (PM) in California. While considerable efforts have been made to reduce toxic diesel PM emissions going into the future, less emphasis has been placed on PM from LDGVs. The goals of this work were to characterize a small fleet of visibly smoking and high PM emitting LDGVs, to explore the potential PM-reduction benefits of Smog Check and of repairs, and to examine remote sensing devices (RSD) as a potential method for identifying high PM emitters in the in-use fleet. For this study, we recruited a fleet of eight vehicles covering a spectrum of PM emission levels. PM and criteria pollutant emissions were quantified on a dynamometer and CVS dilution tunnel system over the Unified Cycle using standard methods and real time PM instruments.
Technical Paper

Investigation of Ultrafine Particle Number Measurements from a Clean Diesel Truck Using the European PMP Protocol

2007-04-16
2007-01-1114
The sampling protocol proposed by the international PMP program for determination of particle emissions from clean light-duty vehicles was applied to the emissions from a California heavy-duty trap-equipped diesel truck. CARB is interested in developing opinions about the potential of this new European approach for emission determination and in exploring its utility for use in California. In this exercise, the use of various commercially available instruments for counting and sizing particles in the context of the PMP recommendations are explored. A single vehicle on a chassis dynamometer was exercised over steady-state and transient cycles. Multiple measurements of gaseous, mass, and particle emissions were collected in order to determine statistical significance. The PMP approach yielded particle emission measurements with higher precision and accuracy than the reference mass-based emission measurement.
Technical Paper

Laminar Flow Whistle on a Vehicle Side Mirror

2007-04-16
2007-01-1549
In the development of several outside mirror designs for vehicles, a high frequency noise (whistling) phenomenon was experienced. First impression was that this might be due to another source on the vehicle (such as water management channels) or a cavity noise; however, upon further investigation the source was found to be the mirror housing. This “laminar whistle” is related to the separation of a laminar boundary layer near the trailing edges of the mirror housing. When there is a free stream impingement on the mirror housing, the boundary layer starts out as laminar, but as the boundary layer travels from the impingement point, distance, speed, and roughness combine to trigger the transition turbulent. However, when the transition is not complete, pressure fluctuations can cause rapidly changing flow patterns that sound like a whistle to the observer. Because the laminar boundary layer has very little energy, it does not allow the flow to stay attached on curved surfaces.
Technical Paper

Model Based Reusable and Reliable Software Validation for Functional Coverage using Virtual ECUs

2007-04-16
2007-01-1742
In embedded software world, development and testing are becoming far more complex with growing functionality and fail safe strategies. As a result of that, model-based software development is getting increasingly popular in capturing the functional requirements and auto generating the code from these validated models to avoid any functional deficiency. However, the complexity in the model may not be correctly interpreted by the code generation tool and may result to an incorrect code behavior. In this paper, a methodology has been proposed and implemented to validate the generated code against the models. Simulation test scripts are recorded in the modeling environment to generate the desired set of test inputs. These input scripts are designed to get complete transition and state exposure to maximize the functional coverage. With these test scripts, expected outputs are recorded for downstream validation in the simulation environment with mature models.
Technical Paper

California's Revised Heavy-Duty Vehicle Smoke and Tampering Inspection Program

1998-08-11
981951
Heavy-duty vehicles account for approximately 30 percent of the oxides of nitrogen (NOx) and 65 percent of the particulate matter (PM) emissions from the entire California on-road fleet, despite the fact that these vehicles comprise only 2 percent of the same. To meet legislative mandates to reduce excess smoke emissions from in-use heavy-duty diesel-powered vehicles, the Air Resources Board (ARB or Board) adopted, in December 1997, amendments to the regulations governing the operation and enforcement of the Heavy-Duty Vehicle Inspection Program (HDVIP or the “roadside” program) and the Periodic Smoke Inspection Program (PSIP or the “fleet” program). The initial roadside program was adopted in November 1990 in response to Senate Bill (SB) 1997 (stat. 1988, ch. 1544, Presley), and enforced from 1991 to 1993. It was suspended in October 1993, when the Board redirected staff to investigate reformulated fuels issues.
Technical Paper

Grammatical Evolution Based Tool for Predicting Multivariable Response Surface for Laser Lap Welding

2008-04-14
2008-01-1372
The problem of predicting the quality of weld is critical to manufacturing. A great deal of data is collected under multiple conditions to predict the quality. The data generated at Daimler Chrysler has been used to develop a model based on grammatical evolution. Grammatical Evolution Technique is based on Genetic Algorithms and generates rules from the data which fit the data. This paper describes the development of a software tool that enables the user to choose input variables such as the metal types of top and bottom layers and their thickness, intensity and speed of laser beam, to generate a three dimensional map showing weld quality. A 3D weld quality surface can be generated in response to any of the two input variables picked from the set of defining input parameters. This tool will enable the user to pick the right set of input conditions to get an optimal weld quality. The tool is developed in Matlab with Graphical User Interface for the ease of operation.
X