Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

New Compact, High Efficiency, Variable Displacement Compressor for the Small Vehicle Segment

2014-04-01
2014-01-0630
As fuel prices continue to rise automotive manufacturers continue to push their suppliers to provide technology that improves the potential fuel efficiency of their applications. In addition there is an increasing trend towards smaller, lighter and more compact vehicles to mitigate the automotive carbon footprint. These movements necessitated the development of a new compact, low mass, variable displacement compressor to match the requirements for these smaller and more efficient vehicles. The new Delphi MVC, or Miniature Variable Compressor, meets these requirements by integrating the high efficiency of our latest swashplate variable compressor design into a compact and lightweight package. This design can be offered in a range of displacements from 80 to 100cc and can be offered as either internally or externally controlled to support the customer's needs.
Journal Article

Fuel System Pressure Increase for Enhanced Performance of GDi Multi-Hole Injection Systems

2014-04-01
2014-01-1209
The progressive trend towards the GDi engine downsizing, the focus on better fuel efficiency and performance, and the regulatory requirements with respect to the combustion emissions have brought the focus of attention on strategies for improvement of in-cylinder mixture preparation and identification and elimination of the sources of combustion emissions, in particular the in-cylinder particulate formation. This paper discusses the fuel system components, injector dynamics, spray characteristics and the single cylinder engine combustion investigation of a 40 [MPa] capable conventional GDi inwardly-opening multi-hole fuel injection system. It provides results of a study of the influence of fuel system pressure increase between 5 [MPa] to 40 [MPa], in conjunction with the injector static flow and spray pattern, on the combustion characteristics, specifically the particulate and gaseous emissions and the fuel economy.
Journal Article

Development of a Gasoline Direct Injection Compression Ignition (GDCI) Engine

2014-04-01
2014-01-1300
In previous work, Gasoline Direct Injection Compression Ignition (GDCI) has demonstrated good potential for high fuel efficiency, low NOx, and low PM over the speed-load range using RON91 gasoline. In the current work, a four-cylinder, 1.8L engine was designed and built based on extensive simulations and single-cylinder engine tests. The engine features a pent roof combustion chamber, central-mounted injector, 15:1 compression ratio, and zero swirl and squish. A new piston was developed and matched with the injection system. The fuel injection, valvetrain, and boost systems were key technology enablers. Engine dynamometer tests were conducted at idle, part-load, and full-load operating conditions. For all operating conditions, the engine was operated with partially premixed compression ignition without mode switching or diffusion controlled combustion.
Journal Article

Design of an Electric Variable CAM Phaser Controller

2012-04-16
2012-01-0433
As the emissions and fuel economy standards for internal combustion engines become ever more stringent, a variety of valvetrain control methods have been developed to improve engine performance. One of these is camshaft (CAM) phasing, which controls the angular position of the CAM relative to the crankshaft allowing changes to the timing of valve lift events. This method has demonstrated advantages including broadening the engine torque curve, increasing peak power at higher RPM, reducing hydrocarbon and NOx emissions, and improving fuel economy. In addition, external EGR systems can be eliminated because internal cylinder dilution control can be achieved by varying CAM timing. Current implementations of CAM phasing use oil-pressure-based electro-mechanical systems. While these systems are relatively low cost and have proven to be robust, they have disadvantages at low oil temperatures and pressures (such as during cranking events).
Technical Paper

Thin-Film High Voltage Capacitors on Ultra-Thin Glass for Electric Drive Vehicle Inverter Applications

2014-04-01
2014-01-0417
The propulsion system in most Electric Drive Vehicles (EDVs) requires an internal combustion engine in combination with an alternating current (AC) electric motor. An electronic device called a power inverter converts battery DC voltage into AC power for the motor. The inverter must be decoupled from the DC source, so a large DC-link capacitor is placed between the battery and the inverter. The DC-link capacitors in these inverters negatively affect the inverters size, weight and assembly cost. To reduce the design/cost impact of the DC-link capacitors, low loss, high dielectric constant (κ) ferroelectric materials are being developed. Ceramic ferroelectrics, such as (Pb,La)(Zr,Ti)O3 [PLZT], offer high dielectric constants and high breakdown strength. Argonne National Laboratory and Delphi Electronics & Safety have been developing thin-film capacitors utilizing PLZT.
Technical Paper

The Effects of GDi Fuel Pressure on Fuel Economy

2014-04-01
2014-01-1438
To meet future particulate number regulations, one path being investigated is higher fuel pressures for direct injection systems. At operating pressures of 30 MPa to 40 MPa, the fuel system components must be designed to withstand these pressures and additional power is required by the pump to pressurize the fuel to higher pressures than the nominal 15MPa to 20MPa in use today. This additional power to the pump can affect vehicle fuel economy, but may be partially offset by increases in combustion efficiency due to improved spray mixture preparation. This paper examines the impact on fuel economy from increased system fuel pressures from a combination of test results and simulations. A GDi pump and valvetrain model has been developed and correlated to existing pump torque measurements and subsequently used to predict the increase in torque and associated impact on fuel economy due to higher GDi system pressures.
Technical Paper

Improving the Fuel Efficiency of Mobile A/C Systems with Variable Displacement Compressors

2014-04-01
2014-01-0700
Variable displacement compressors have proven to be more energy efficient than the equivalent compressor with fixed displacement for mobile A/C applications. Variable displacement compressors de-stroke rather than cycle to prevent the evaporator from freezing. Cycling an internally controlled variable compressor is counter intuitive, yet results in a 15-20% reduction in the energy used by the compressor as demonstrated by tests on multiple vehicle applications. Externally controlled variable compressors have the highest energy efficiency and extending cycling to these compressors during cool temperatures reduces the compressor energy consumption by 10%.
Technical Paper

Robust Thermal Design of a DC-DC Converter in an Electric Vehicle

2014-04-01
2014-01-0709
In hybrid electric vehicles (HEVs) and full electric vehicles (EVs), efficient electrical power management with proper supply of power at the required voltage levels is essential. A DC (Direct Current)-DC converter is one of the key electrical units in a HEV/EV. The DC-DC converter dealt in the present work is intended to create the DC voltages necessary to power the accessories. The electronic circuit in this DC-DC converter consists of high power devices like Metal-Oxide Semiconductor Field-Effect Transistors (MOSFETs), inductors, transformers, etc. mounted on a printed circuit board (PCB). The DC-DC converter interacts with a high voltage battery pack and supplies a low voltage power to the accessory battery. Due to this power handling operation, the devices in the convertor experience high temperatures. The temperature rise of the devices beyond the permissible limits could be detrimental to an efficient and safe operation of the converter.
Technical Paper

PCM Evaporator with Thermosiphon

2014-04-01
2014-01-0634
With more vehicles adopting fuel-saving engine start-stop routines and with the number of hybrid and electric vehicles on the rise, automotive A/C (air conditioning) systems are facing a challenge to maintain passenger comfort during the time when the compressor is inactive due to engine shut down. Using PCM (Phase Change Material) in the evaporator enables it to store cold when the compressor is active and release it to the cooling air stream when the compressor is not running. A unique feature of Delphi's design is that a refrigerant thermosiphon mechanism inside the evaporator drives the energy transport between the PCM and air stream. Delphi's PCM evaporator extends comfort for short duration idle stops, reduces emissions, and increases fuel economy and electric drive range. In this paper, the design aspects of a thermosiphon based PCM cold storage evaporator are described and the performance and operation of the PCM evaporator in a MAC (Mobile Air Conditioning) system discussed.
X