Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Technical Paper

SAE Standard Procedure J2747 for Measuring Hydraulic Pump Airborne Noise

2007-05-15
2007-01-2408
This work discusses the development of SAE procedure J2747, “Hydraulic Pump Airborne Noise Bench Test”. This is a test procedure describing a standard method for measuring radiated sound power levels from hydraulic pumps of the type typically used in automotive power steering systems, though it can be extended for use with other types of pumps. This standard was developed by a committee of industry representatives from OEM's, suppliers and NVH testing firms familiar with NVH measurement requirements for automotive hydraulic pumps. Details of the test standard are discussed. The hardware configuration of the test bench and the configuration of the test article are described. Test conditions, data acquisition and post-processing specifics are also included. Contextual information regarding the reasoning and priorities applied by the development committee is provided to further explain the strengths, limitations and intended usage of the test procedure.
Technical Paper

Exploring the Trade-Off of Handling Stability and Responsiveness with Advanced Control Systems

2007-04-16
2007-01-0812
Advanced chassis control systems enable a vehicle to achieve new levels of performance in handling stability and responsiveness. In recent work by NHTSA and others, the performance of Electronic Stability Control (ESC) systems has been studied with focus on yaw stability and roll stability of vehicles on high friction surfaces. However, it is recognized that vehicle handling responsiveness is also an important aspect that should be maintained. This paper explores the trade-offs between yaw rate, side slip, and roll motions of a vehicle, and their relationships to handling stability and handling responsiveness. This paper further describes how various control systems are able to manage these motions. The paper also discusses methods to assess vehicle stability and responsiveness using specific maneuvers and measurements, and it includes data from vehicle tests on a slippery surface.
Technical Paper

Closed Loop Pressure Control System Development for an Automatic Transmission

2009-04-20
2009-01-0951
This paper presents the development of a transmission closed loop pressure control system. The objective of this system is to improve transmission pressure control accuracy by employing closed-loop technology. The control system design includes both feed forward and feedback control. The feed forward control algorithm continuously learns solenoid P-I characteristics. The closed loop feedback control has a conventional PID control with multi-level gain selections for each control channel, as well as different operating points. To further improve the system performance, Robust Optimization is carried out to determine the optimal set of control parameters and controller hardware design factors. The optimized design is verified via an L18 experiment on spin dynamometer. The design is also tested on vehicle.
Technical Paper

Performance, Robustness, and Durability of an Automatic Brake System for Vehicle Adaptive Cruise Control

2004-03-08
2004-01-0255
Adaptive Cruise Control (ACC) technology is presently emerging in the automotive market as a convenience function intended to reduce driver workload. It allows the host vehicle to maintain a set speed and distance from preceding vehicles by a forward object detection sensor. The forward object detection sensor is the focal point of the ACC control system, which determines and regulates vehicle acceleration and deceleration through a powertrain torque control system and an automatic brake control system. This paper presents a design of an automatic braking system that utilizes a microprocessor-controlled brake hydraulic modulator. The alternatively qualified automatic braking means is reviewed first. The product level requirements of the performance, robustness, and durability for an automatic brake system are addressed. A brief overview of the presented system architecture is described.
Technical Paper

Hierarchical Component-based Fault Diagnostics for By-Wire Systems

2004-03-08
2004-01-0285
This paper proposes the concept of Generalized Diagnostic Component (GDC) and presents a modular fault diagnostic strategy for safety critical automotive systems. The diagnostic strategy makes full use of hierarchical techniques, integrates the generalized diagnostic design into all-purpose vehicle diagnoses based on reconfiguration of the GDCs, and inherits the model-based diagnostic algorithms developed for Steering/Braking-By-Wire systems. The GDC-based approach simplifies the design and integration of diagnostics in complex dynamical control systems, and has been successfully implemented in an eight degrees of freedom NAVDyn (Non-Linear Analysis of Vehicle Dynamics) simulation model using Matlab Simulink. The simulation results are provided in this paper to testify that the diagnostic strategy and implementation are feasible, efficient and dependable.
Technical Paper

A Control System Methodology for Steer by Wire Systems

2004-03-08
2004-01-1106
Steer by Wire systems provide many benefits in terms of functionality, and at the same time present significant challenges too. Chief among them is to make sure that an acceptable steering feel is achieved. Various aspects of this subjective attribute will be defined mathematically. A control system that is architected specifically to meet these challenges is presented. Furthermore, the design is made such that it would be robust to tire and loading variations. Supporting vehicle data and model results are shown as needed.
Technical Paper

Economic Analysis of Powertrain Control Technologies

2002-10-21
2002-21-0035
Regulatory and market pressures continue to challenge the automotive industry to develop technologies focused on reducing exhaust emissions and improving fuel economy. This paper introduces a practical model, which evaluates the economic value of various technologies based on their ability to reduce fuel consumption, improve emissions or provide consumer benefits such as improved performance. By evaluating the individual elements of economic value as viewed by the OEM manufacturer, while keeping the end consumer in mind, technology selection decisions can be made. These elements include annual fuel usage, vehicle performance, mass reduction and emissions, among others. The following technologies are discussed and evaluated: gasoline direct injection, variable valvetrain technologies, common-rail diesel and hybrid vehicles.
Technical Paper

CFRM Concept at Vehicle Idle Conditions

2003-03-03
2003-01-0613
The concept of condenser, fan, and radiator power train cooling module (CFRM) was further evaluated via three-dimensional computational fluid dynamics (CFD) studies in the present paper for vehicle at idle conditions. The analysis shows that the CFRM configuration was more prone to the problem of front-end air re-circulation as compared with the conventional condenser, radiator, and fan power train cooling module (CRFM). The enhanced front-end air re-circulation leads to a higher air temperature passing through the condenser. The higher air temperature, left unimproved, could render the vehicle air conditioning (AC) unit ineffective. The analysis also shows that the front-end air re-circulation can be reduced with an added sealing between the CFRM package and the front of the vehicle, making the CFRM package acceptable at the vehicle idle conditions.
Technical Paper

Closed Loop Pressure Control System Requirements and Implementation

2011-04-12
2011-01-0391
Electro-hydraulic actuation has been used widely in automatic transmission designs. With greater demand for premium shift quality of automatic transmissions, higher pressure control accuracy of the transmission electro-hydraulic control system has become one of the main factors for meeting this growing demand. This demand has been the driving force for the development of closed loop pressure controls technology. This paper presents the further research done based upon a previously developed closed loop system. The focus for this research is on the system requirements, such as solenoid driver selection and system latency handling. Both spin-stand and test vehicle setups are discussed in detail. Test results for various configurations are given.
Technical Paper

Sensitivity of Contact Electronic Throttle Control Sensor to Control System Variation

2006-04-03
2006-01-0763
The purpose of this paper is to improve the understanding of the advantages of a non-contact electronic throttle control (ETC) air control valve position sensor over the potentiometer technology of contacting position sensors. The non-contact position sensing offers the industry an opportunity to take advantage of an improved ability to assess reliability of the product and utilize accelerated testing techniques with improved robustness to control system perturbations. Specifically; eliminating the contact wear failure mechanism reduces the complexity, and duration of ETC air control valve life testing and increases the robustness of the ETC system to noise factors from the control system variation.
Technical Paper

Effective Application of Software Safety Techniques for Automotive Embedded Control Systems

2005-04-11
2005-01-0785
Execution of a software safety program is an accepted best practice to help verify that potential software hazards are identified and their associated risks are mitigated. Successful execution of a software safety program involves selecting and applying effective analysis methods and tasks that are appropriate for the specific needs of the development project and that satisfy software safety program requirements. This paper describes the effective application of a set of software safety methods and tasks that satisfy software safety program requirements for many applications. A key element of this approach is a tightly coupled fault tree analysis and failure modes and effects analysis. The approach has been successfully applied to several automotive embedded control systems with positive results.
Technical Paper

Experimental Evaluation of R134a Emission with Various Hose Constructions

2005-05-10
2005-01-2032
The focus of this paper is to understand, from experimental data, the R134a refrigerant emission rates of various hose materials due to permeation. This paper focuses on four main points for hose assembly emission of R134a: (1) characteristics of hose permeation in response to the effect of oil in R134a and the characteristics of hose permeation of vapor vs. liquid refrigerant; (2) conditioning of the hose material over time to reach steady state R134a emission; (3) the relative contribution of hose permeation and coupling emission to the overall hose assembly refrigerant emission; (4) transient emission rates due to transient temperature and pressure conditions. Studies include hoses with different materials and constructions resulting in various levels of R134a permeation.
Technical Paper

Diagnosis Concept for Future Vehicle Electronic Systems

2004-10-18
2004-21-0010
As automotive electronic control systems continue to increase in usage and complexity, the challenges for developing automotive diagnostics also increase. Reduced development cycle times, the increased significance of diagnostics for safety critical systems, and the integration of vehicle systems across multiple control systems all add to the tasks of developing diagnostics for the automobiles of today and tomorrow. Addressing automotive diagnostics now requires the Tier 1 supplier to utilize a formal diagnostic development methodology. There are also opportunities for Tier 1 suppliers to add value by developing vehicle-level supervisory diagnostic strategies, in addition to subsystem and system-level diagnostic strategies. There is also a prospect to provide strategies and tools to enhance service at the vehicle level. This paper proposes an approach for Tier 1 suppliers to address diagnostic and service issues at the component, system, and vehicle level.
Technical Paper

The Auto-Generation of Calibration Guides from MATLAB® Simulink®

2019-03-19
2019-01-1332
With the inception of model-based design and automatic code generation, many organizations are developing controls and diagnostics algorithms in model-based development tools to meet customer and regulatory requirements. Advances in model-based design have made it easier to generate C code from models and help software engineers streamline their workflow. Typically, after the software has been developed, the models are handed over to a calibration team responsible for calibrating the features to meet specified customer and regulatory requirements. However, once the models are handed over to the calibration team, the calibration engineers are unaware of how to calibrate the features because documentation is not available. Typically, model documentation trails behind the software process because it is created manually, most of this time is spent on formatting. As a result, lack of model documentation or up-to date documentation causes a lot of pain for OEM’s and Tier 1 suppliers.
X