Refine Your Search

Topic

Search Results

Technical Paper

Characterization of a Catalytic Converter Internal Flow

2007-10-29
2007-01-4024
This paper includes a numerical and experimental study of fluid flow in automotive catalytic converters. The numerical work involves using computational fluid dynamics (CFD) to perform three-dimensional calculations of turbulent flow in an inlet pipe, inlet cone, catalyst substrate (porous medium), outlet cone, and outlet pipe. The experimental work includes using hot-wire anemometry to measure the velocity profile at the outlet of the catalyst substrate, and pressure drop measurements across the system. Very often, the designer may have to resort to offset inlet and outlet cones, or angled inlet pipes due to space limitations. Hence, it is very difficult to achieve a good flow distribution at the inlet cross section of the catalyst substrate. Therefore, it is important to study the effect of the geometry of the catalytic converter on flow uniformity in the substrate.
Technical Paper

SAE Standard Procedure J2747 for Measuring Hydraulic Pump Airborne Noise

2007-05-15
2007-01-2408
This work discusses the development of SAE procedure J2747, “Hydraulic Pump Airborne Noise Bench Test”. This is a test procedure describing a standard method for measuring radiated sound power levels from hydraulic pumps of the type typically used in automotive power steering systems, though it can be extended for use with other types of pumps. This standard was developed by a committee of industry representatives from OEM's, suppliers and NVH testing firms familiar with NVH measurement requirements for automotive hydraulic pumps. Details of the test standard are discussed. The hardware configuration of the test bench and the configuration of the test article are described. Test conditions, data acquisition and post-processing specifics are also included. Contextual information regarding the reasoning and priorities applied by the development committee is provided to further explain the strengths, limitations and intended usage of the test procedure.
Technical Paper

Evaluation of the MADYMO Full FE Human Model in a Rear Impact Simulation of an IndyCar

2006-12-05
2006-01-3659
Computer simulation was used as a complement to crash and injury field data analysis and physical sled and barrier tests to investigate and predict the spinal injuries of a rear impact in an IndyCar. The model was expected to relate the spinal loads to the observed injuries, thereby predicting the probability and location of spinal fractures. The final goal is to help reduce the fracture risk by optimizing the seat and restraint system design and the driver's position using computer modeling and sled testing. MADYMO Full FE Human Body Model (HBM) was selected for use because of its full spinal structural details and its compatibility with the vehicle and restraint system models. However, the IndyCar application imposed unique challenges to the HBM. First, the driver position in a race car is very different from that in a typical passenger car.
Technical Paper

Fluid Dynamic Study of Hollow Cone Sprays

2008-04-14
2008-01-0131
An analytical study of spray from an outwardly opening pressure swirl injector has been presented in this paper. A number of model injectors with varying design configurations have been used in this study. The outwardly opening injection process has been modeled using a modified spray breakup model presented in an earlier study. It has been observed that simulation results from the study clearly capture the mechanism by which an outwardly opening conical spray interacts with the downstream flow field. Velocity field near the tip of the injector shows that the conical streams emanating from an outwardly opening injector have the tendency to entrap air into the flow stream which is responsible for finer spray. A deviation from the optimum set of physical parameters showed a high propensity to produce large spray droplets. This study also emphasizes the importance of computational fluid dynamics (CFD) as an engineering tool to understand the complex physical processes.
Technical Paper

An Analytical and Experimental Study of a High Pressure Single Piston Pump for Gasoline Direct Injection (GDi) Engine Applications

2009-04-20
2009-01-1504
In recent years, gasoline direct injection (GDi) engines have been popular due to their inherent potential for reduction of exhaust emissions and fuel consumption to meet stringent EPA standards. These engines require high-pressure fuel injection in order to improve the atomization process and accelerate mixture preparation. The high-pressure fuel pump is an essential component in the GDi system. Therefore, understanding the flow characteristics of this device and its associated behavior is critical for improving the performance of this category of engines. In this paper, the fluid flow characteristics in a high-pressure single-piston pump for use in GDi engines are analyzed using 1-D LMS Imagine.Lab AMESim system and 3-D Ansys Fluent computational fluid dynamics (CFD) models. The flow rate of the fuel pump under various cam speeds has been examined along with characteristics of the pump's control valve.
Technical Paper

Spray Pattern Recognition for Multi-Hole Gasoline Direct Injectors Using CFD Modeling

2009-04-20
2009-01-1488
This paper describes a correlation study on fuel spray pattern recognition of multi-hole injectors for gasoline direct injection (GDi) engines. Spray pattern is characterized by patternation length, which represents the distance of maximum droplet concentration from the axis of the injector. Five fuel injectors with different numbers and sizes of nozzle holes were considered in this study. Experimental data and CFD modeling results were used separately to develop regression models for spray patternation. These regressions predicted the influence of a number of injector operating and design parameters, including injection system operating pressure, valve lift, injector hole length-to-diameter ratio (L/d) and the orientation of the injector hole. The regression correlations provided a good fit with both experimental and CFD spray simulation results. Thus CFD offers a good complement to experimental validation during development efforts to meet a desired injector spray pattern.
Technical Paper

A Strategy to Partition Crash Data to Define Active-Safety Sensors and Product Solutions

2008-10-20
2008-21-0032
Both Crash-Avoidance and Pre-Crash active safety technologies are being developed to help reduce the number of crashes and minimize the severity of crashes. The root basis in the development of new and improved active safety technologies always begins with gaining further knowledge about crash kinds and causes. The dynamics of crashes are quite complex. The evolving precursor crash situation initiated in the Crash-Avoidance time-period will vary from the imminent crash situation in the Pre-Crash time-period. As such, in order to develop the appropriate requirements for both crash-avoidance and pre-crash technologies, they must be analyzed from their respective crash data. A data-driven methodology process has been developed which partitions the field data with a perspective to crash-avoidance and pre-crash.
Technical Paper

Sled Test Results Using the Hybrid III 6 Year Old: An Evaluation of Various Restraints and Crash Configurations

2004-03-08
2004-01-0316
Data suggest that in response to substantial educational efforts, more children are being placed in the rear seats of vehicles. As this transition occurs, it is important to make efforts to optimize the performance of rear seat restraints for children. Prior to developing new restraints for children for the rear seat, a better understanding of child responses in various crash scenarios is needed. The objective of this study was to evaluate the performance of various restraint systems and countermeasures for child occupants in different crash scenarios. Sled tests were carried out with a Hybrid III 6 year old anthropomorphic test device (ATD) in frontal, oblique and side impact configurations. The performance of a highback and a backless booster seat was assessed. The results were compared with two standard 3 point belt restraint systems: 1. a package shelf mounted belt, and 2. a C-pillar mounted belt.
Technical Paper

Rollover Crash Sensing and Safety Overview

2004-03-08
2004-01-0342
This paper provides an overview of rollover crash safety, including field crash statistics, pre- and rollover dynamics, test procedures and dummy responses as well as a bibliography of pertinent literature. Based on the 2001 Traffic Safety Facts published by NHTSA, rollovers account for 10.5% of the first harmful events in fatal crashes; but, 19.5% of vehicles in fatal crashes had a rollover in the impact sequence. Based on an analysis of the 1993-2001 NASS for non-ejected occupants, 10.5% of occupants are exposed to rollovers, but these occupants experience a high proportion of AIS 3-6 injury (16.1% for belted and 23.9% for unbelted occupants). The head and thorax are the most seriously injured body regions in rollovers. This paper also describes a research program aimed at defining rollover sensing requirements to activate belt pretensioners, roof-rail airbags and convertible pop-up rollbars.
Technical Paper

Simulation and Testing of a Suite of Field Relevant Rollovers

2004-03-08
2004-01-0335
Automotive rollover is a complex mechanical phenomenon. In order to understand the mechanism of rollover and develop any potential countermeasures for occupant protection, efficient and repeatable laboratory tests are necessary. However, these tests are not well understood and are still an active area of research interest. It is not always easy or intuitive to estimate the necessary initial and boundary conditions for such tests to assure repeatability. This task can be even more challenging when rollover is a second or third event (e.g. frontal impact followed by a rollover). In addition, often vehicle and occupant kinematics need to be estimated a-priori, first for the safe operation of the crew and equipment safety, and second for capturing and recording the event. It is important to achieve the required vehicle kinematics in an efficient manner and thus reduce repetitive tests. Mathematical modeling of the phenomenon can greatly assist in understanding such kinematics.
Technical Paper

CAE-Based Side Curtain Airbag Design

2004-03-08
2004-01-0841
Since its invention in early 1990s, the side curtain airbag has become an important part of the occupant restraint system for side impact and rollover protection. Computer Aided Engineering (CAE) is often used to help side curtain airbag design. Because of the unique characteristics of side curtain airbag systems, the simulation of side curtain airbag systems faces different challenges in comparison to the simulation of driver and passenger airbag systems. The typical side curtain airbag CAE analysis includes, but is not limited to, cushion volume evaluation, cushion coverage review, cushion shrinkage and tension force review, deployment timing review and seam shape and location review. The commonly used uniform pressure airbag models serve the purpose in most cases.
Technical Paper

Survey of Front Passenger Posture Usage in Passenger Vehicles

2004-03-08
2004-01-0845
In 2002, NHTSA statistics indicate air bag deployments saved an estimated 1,500 lives; however, reports of occupants having serious or fatal injuries during air bag deployment appear low relative to the number of accidents with air bag deployments. To avoid air bag induced injuries, a variety of occupant sensing technologies are being developed. One of the critical logic deployment challenges faced by these technologies is whether the system can accurately determine if the occupant is in a posture or a position such that air bag deployment may result in an injury. To improve accuracy, it is necessary to understand what postures the occupants are likely to assume during a ride and how often. For this purpose, Delphi Corporation has conducted a survey to solicit opinions on the posture usage rate. With 560 responses, the frequencies for 29 sitting postures for adult passengers and 13 child postures or positions were estimated.
Technical Paper

Analytical Design of Cockpit Modules for Safety and Comfort

2004-03-08
2004-01-1481
This paper reviews the state of the art on analytical design of cockpit modules in two most crucial performance categories: safety and comfort. On safety, applications of finite element analysis (FEA) for achieving robust designs that meet FMVSS 201, 208 and 214 requirements and score top frontal and side NCAP star-ratings are presented. On comfort, focus is placed on Noise, Vibration and Harshness (NVH) performance. Cutting-edge analytical tools for Buzz, Squeak and Rattle (BSR) avoidance and passenger compartment noise reduction are demonstrated. Most of the analytical results shown in this paper are based on the development work of a real-life application program. Correlations between the analytical results and physical test results are included. Examples of Computational Fluid Dynamics (CFD) analysis for climate control are also included. At the end, the road map toward 100 percent virtual prototyping and validation is presented.
Technical Paper

Evaluation and Comparison of CFD Integrated Airbag Models in LS-DYNA, MADYMO and PAM-CRASH

2004-03-08
2004-01-1627
The interaction between the deploying airbag and the Out-Of-Position (OOP) occupants remains a challenge in occupant protection system simulations. The integration of Computational Fluid Dynamics (CFD) analysis into Finite Element (FE) airbag model is a helpful and important tool to address this challenge. Three major commercial crash simulation software packages widely used in the automotive safety industry, LS-DYNA, MADYMO and PAM-CRASH are in the process of implementing different approaches for airbag CFD simulation. In this study, an attempt was made to evaluate and compare the CFD integrated airbag models in these software packages. Specially designed tests were conducted to study and capture the pressure distribution inside a flat airbag and the test results were used for the evaluation. Strengths and limitations of each software package are discussed in this paper.
Technical Paper

Economic Analysis of Powertrain Control Technologies

2002-10-21
2002-21-0035
Regulatory and market pressures continue to challenge the automotive industry to develop technologies focused on reducing exhaust emissions and improving fuel economy. This paper introduces a practical model, which evaluates the economic value of various technologies based on their ability to reduce fuel consumption, improve emissions or provide consumer benefits such as improved performance. By evaluating the individual elements of economic value as viewed by the OEM manufacturer, while keeping the end consumer in mind, technology selection decisions can be made. These elements include annual fuel usage, vehicle performance, mass reduction and emissions, among others. The following technologies are discussed and evaluated: gasoline direct injection, variable valvetrain technologies, common-rail diesel and hybrid vehicles.
Technical Paper

Interior Sensing for Automotive Occupant Safety

2002-10-21
2002-21-0031
The industry strategy for automotive safety systems has been evolving over the last 20 years. Systems, such as frontal and side airbags, are available today on the worldwide market that provide proven safety benefits. Interest in advanced safety systems for occupant protection and accident avoidance, is focused on making further reductions in road fatalities and injuries. Interior occupant sensing systems for advanced restraint systems, trapped occupant sensing, and driver monitoring are today under intense development as part of the industry's safety vision. In this paper, we will discuss the need for and requirements of interior occupant sensing systems, as well as applicable technologies
Technical Paper

Component and System Life Distribution Prediction Using Weibull and Monte Carlo Analysis with Reliability Demonstration Implications for an Electronic Diesel Fuel Injector

2003-03-03
2003-01-1363
This paper presents a methodology to predict component and system reliability and durability. The methodology is illustrated with an electronic diesel fuel injector case study that integrates customer usage data, component failure distribution, system failure criteria, manufacturing variation, and variation in customer severity. Extension to the vehicle system level enables correlation between component and system requirements. Further, this analysis provides the basis to establish a knowledge-based test option for a success test validation program to demonstrate reliability.
Technical Paper

CFRM Concept at Vehicle Idle Conditions

2003-03-03
2003-01-0613
The concept of condenser, fan, and radiator power train cooling module (CFRM) was further evaluated via three-dimensional computational fluid dynamics (CFD) studies in the present paper for vehicle at idle conditions. The analysis shows that the CFRM configuration was more prone to the problem of front-end air re-circulation as compared with the conventional condenser, radiator, and fan power train cooling module (CRFM). The enhanced front-end air re-circulation leads to a higher air temperature passing through the condenser. The higher air temperature, left unimproved, could render the vehicle air conditioning (AC) unit ineffective. The analysis also shows that the front-end air re-circulation can be reduced with an added sealing between the CFRM package and the front of the vehicle, making the CFRM package acceptable at the vehicle idle conditions.
Technical Paper

Closed Loop Pressure Control System Requirements and Implementation

2011-04-12
2011-01-0391
Electro-hydraulic actuation has been used widely in automatic transmission designs. With greater demand for premium shift quality of automatic transmissions, higher pressure control accuracy of the transmission electro-hydraulic control system has become one of the main factors for meeting this growing demand. This demand has been the driving force for the development of closed loop pressure controls technology. This paper presents the further research done based upon a previously developed closed loop system. The focus for this research is on the system requirements, such as solenoid driver selection and system latency handling. Both spin-stand and test vehicle setups are discussed in detail. Test results for various configurations are given.
Technical Paper

Comparison of Load Distributions between Human Occupants and ATDs in Normal and Non-normal Occupant Positions and Postures

2006-04-03
2006-01-1435
In occupant sensing system development, the Anthropomorphic Test Dummy (ATD) and the Occupant Classification ATD (OCATD) are frequently used to simulate live human subjects in the testing and validation of weight based occupant sensing systems. A study was conducted to investigate the range of loading differences between these ATDs and live human subjects over various seating postures and conditions. The results of the study revealed that differences in seat load patterns could be significant, even though both the ATD and live humans are in the same weight and body size categories. Seat loading was measured using Hybrid III (5th percentile female, 50th percentile male, and 3 year old) ATDs, OCATDs (OCATD5 - 5th percentile female, and OCATD6 - 6 yr old child), and a CRABI (12-month old) dummy. Human subjects in the same weight and height categories as the above listed ATDs were also measured.
X