Refine Your Search

Topic

Search Results

Journal Article

Analysis of Pre-Crash Data Transferred over the Serial Data Bus and Utilized by the SDM-DS Module

2011-04-12
2011-01-0809
The primary function of an airbag control module is to detect crashes, discriminate and predict if a deployment is necessary, then deploy the restraint systems including airbags and where applicable, pretensioners. At General Motors (GM), the internal term for airbag control module is Sensing and Diagnostic Module (SDM). In the 1994 model year, GM introduced its SDM on some of its North American airbag-equipped vehicles. A secondary function of that SDM and all subsequent SDMs is to record crash related data. This data can include data regarding impact severity from internal accelerometers and pre-crash vehicle data from various chassis and powertrain modules. Previous researchers have addressed the accuracy of both the velocity change data, recorded by the SDM, and the pre-crash data, but the assessment of the timing of the pre-crash data has been limited to a single family of modules (Delphi SDM-G).
Technical Paper

Evaluation of the MADYMO Full FE Human Model in a Rear Impact Simulation of an IndyCar

2006-12-05
2006-01-3659
Computer simulation was used as a complement to crash and injury field data analysis and physical sled and barrier tests to investigate and predict the spinal injuries of a rear impact in an IndyCar. The model was expected to relate the spinal loads to the observed injuries, thereby predicting the probability and location of spinal fractures. The final goal is to help reduce the fracture risk by optimizing the seat and restraint system design and the driver's position using computer modeling and sled testing. MADYMO Full FE Human Body Model (HBM) was selected for use because of its full spinal structural details and its compatibility with the vehicle and restraint system models. However, the IndyCar application imposed unique challenges to the HBM. First, the driver position in a race car is very different from that in a typical passenger car.
Technical Paper

A Hardware-in-the-loop Test Bench for Production Transmission Controls Software Quality Validation

2007-04-16
2007-01-0502
Production software validation is critical during software development, allowing potential quality issues that could occur in the field to be minimized. By developing automated and repeatable software test methods, test cases can be created to validate targeted areas of the control software for confirmation of the expected results from software release to release. This is especially important when algorithm/software development timing is aggressive and the management of development activities in a global work environment requires high quality, and timely test results. This paper presents a hardware-in-the-loop (HIL) test bench for the validation of production transmission controls software. The powertrain model used within the HIL consists of an engine model and a detailed automatic transmission dynamics model. The model runs in an OPAL-RT TestDrive based HIL system.
Technical Paper

A 6-Speed Automatic Transmission Plant Dynamics Model for HIL Test Bench

2008-04-14
2008-01-0630
During the production controller and software development process, one critical step is the controller and software verification. There are various ways to perform this verification. One of the commonly used methods is to utilize an HIL (hardware-in-the-loop) test bench to emulate powertrain hardware for development and validation of powertrain controllers and software. A key piece of an HIL bench is the plant dynamics model used to emulate the external environment of a modern controller, such as engine (ECM), transmission (TCM) or powertrain controller (PCM), so that the algorithms and their software implementation can be exercised to confirm the desired results. This paper presents a 6-speed automatic transmission plant dynamics model development for hardware-in-the-loop (HIL) test bench for the validation of production transmission controls software. The modeling method, model validation, and application in an HIL test environment are described in details.
Technical Paper

A Closed-Loop Drive-train Model for HIL Test Bench

2009-04-20
2009-01-1139
This paper presents a hardware-in-the-loop (HIL) test bench for the validation of production transmission controls software, with a focus on a closed-loop vehicle drive-train model incorporating a detailed automatic transmission plant dynamics model developed for certain applications. Specifically, this paper presents the closed-loop integration of a 6-speed automatic transmission model developed for our HIL transmission controller and algorithm test bench (Opal-RT TestDrive based). The model validation, integration and its application in an HIL test environment are described in details.
Technical Paper

Sled Test Results Using the Hybrid III 6 Year Old: An Evaluation of Various Restraints and Crash Configurations

2004-03-08
2004-01-0316
Data suggest that in response to substantial educational efforts, more children are being placed in the rear seats of vehicles. As this transition occurs, it is important to make efforts to optimize the performance of rear seat restraints for children. Prior to developing new restraints for children for the rear seat, a better understanding of child responses in various crash scenarios is needed. The objective of this study was to evaluate the performance of various restraint systems and countermeasures for child occupants in different crash scenarios. Sled tests were carried out with a Hybrid III 6 year old anthropomorphic test device (ATD) in frontal, oblique and side impact configurations. The performance of a highback and a backless booster seat was assessed. The results were compared with two standard 3 point belt restraint systems: 1. a package shelf mounted belt, and 2. a C-pillar mounted belt.
Technical Paper

Simulation and Testing of a Suite of Field Relevant Rollovers

2004-03-08
2004-01-0335
Automotive rollover is a complex mechanical phenomenon. In order to understand the mechanism of rollover and develop any potential countermeasures for occupant protection, efficient and repeatable laboratory tests are necessary. However, these tests are not well understood and are still an active area of research interest. It is not always easy or intuitive to estimate the necessary initial and boundary conditions for such tests to assure repeatability. This task can be even more challenging when rollover is a second or third event (e.g. frontal impact followed by a rollover). In addition, often vehicle and occupant kinematics need to be estimated a-priori, first for the safe operation of the crew and equipment safety, and second for capturing and recording the event. It is important to achieve the required vehicle kinematics in an efficient manner and thus reduce repetitive tests. Mathematical modeling of the phenomenon can greatly assist in understanding such kinematics.
Technical Paper

Combustion Assisted Belt-Cranking of a V-8 Engine at 12-Volts

2004-03-08
2004-01-0569
Implementation of engine turnoff at idle is desirable to gain improvements in vehicle fuel economy. There are a number of alternatives for implementation of the restarting function, including the existing cranking motor, a 12V or 36V belt-starter, a crankshaft integrated-starter-generator (ISG), and other, more complex hybrid powertrain architectures. Of these options, the 12V belt-alternator-starter (BAS) offers strong potential for fast, quiet starting at a lower system cost and complexity than higher-power 36V alternatives. Two challenges are 1) the need to accelerate a large engine to idle speed quickly, and 2) dynamic torque control during the start for smoothness. In the absence of a higher power electrical machine to accomplish these tasks, combustion-assisted starting has been studied as a potential method of aiding a 12V accessory drive belt-alternator-starter in the starting process on larger engines.
Technical Paper

CAE-Based Side Curtain Airbag Design

2004-03-08
2004-01-0841
Since its invention in early 1990s, the side curtain airbag has become an important part of the occupant restraint system for side impact and rollover protection. Computer Aided Engineering (CAE) is often used to help side curtain airbag design. Because of the unique characteristics of side curtain airbag systems, the simulation of side curtain airbag systems faces different challenges in comparison to the simulation of driver and passenger airbag systems. The typical side curtain airbag CAE analysis includes, but is not limited to, cushion volume evaluation, cushion coverage review, cushion shrinkage and tension force review, deployment timing review and seam shape and location review. The commonly used uniform pressure airbag models serve the purpose in most cases.
Technical Paper

Survey of Front Passenger Posture Usage in Passenger Vehicles

2004-03-08
2004-01-0845
In 2002, NHTSA statistics indicate air bag deployments saved an estimated 1,500 lives; however, reports of occupants having serious or fatal injuries during air bag deployment appear low relative to the number of accidents with air bag deployments. To avoid air bag induced injuries, a variety of occupant sensing technologies are being developed. One of the critical logic deployment challenges faced by these technologies is whether the system can accurately determine if the occupant is in a posture or a position such that air bag deployment may result in an injury. To improve accuracy, it is necessary to understand what postures the occupants are likely to assume during a ride and how often. For this purpose, Delphi Corporation has conducted a survey to solicit opinions on the posture usage rate. With 560 responses, the frequencies for 29 sitting postures for adult passengers and 13 child postures or positions were estimated.
Technical Paper

Correlation Grading Methodology for Occupant Protection System Models

2004-03-08
2004-01-1631
Computer modeling and simulation have become one of the primary methods for development and design of automobile occupant protection systems (OPS). To ensure the accuracy and reliability of a math-based OPS design, the correlation quality assessment of mathematical models is essential for program success. In a typical industrial approach, correlation quality is assessed by comparing chart characteristics and scored based on an engineer's modeling experience and judgment. However, due to the complexity of the OPS models and their responses, a systematic approach is needed for accuracy and consistency. In this paper, a correlation grading methodology for the OPS models is presented. The grading system evaluates a wide spectrum of a computer model's performances, including kinematics, dynamic responses, and dummy injury measurements. Statistical analysis is utilized to compare the time histories of the tested and simulated dynamic responses.
Technical Paper

Evaluation and Comparison of CFD Integrated Airbag Models in LS-DYNA, MADYMO and PAM-CRASH

2004-03-08
2004-01-1627
The interaction between the deploying airbag and the Out-Of-Position (OOP) occupants remains a challenge in occupant protection system simulations. The integration of Computational Fluid Dynamics (CFD) analysis into Finite Element (FE) airbag model is a helpful and important tool to address this challenge. Three major commercial crash simulation software packages widely used in the automotive safety industry, LS-DYNA, MADYMO and PAM-CRASH are in the process of implementing different approaches for airbag CFD simulation. In this study, an attempt was made to evaluate and compare the CFD integrated airbag models in these software packages. Specially designed tests were conducted to study and capture the pressure distribution inside a flat airbag and the test results were used for the evaluation. Strengths and limitations of each software package are discussed in this paper.
Technical Paper

Interior Sensing for Automotive Occupant Safety

2002-10-21
2002-21-0031
The industry strategy for automotive safety systems has been evolving over the last 20 years. Systems, such as frontal and side airbags, are available today on the worldwide market that provide proven safety benefits. Interest in advanced safety systems for occupant protection and accident avoidance, is focused on making further reductions in road fatalities and injuries. Interior occupant sensing systems for advanced restraint systems, trapped occupant sensing, and driver monitoring are today under intense development as part of the industry's safety vision. In this paper, we will discuss the need for and requirements of interior occupant sensing systems, as well as applicable technologies
Technical Paper

Safety Belt Fit, Comfort, and Contact Pressure based on Upper Anchorage Location and Seat Back Angle

2003-03-03
2003-01-0954
A seat belt usability study was conducted to investigate factors associated with seat belt comfort and convenience related to shoulder belt contact pressure, shoulder belt fit, and seat belt upper anchorage location. Two major objectives were addressed in this study: (1) Determine the shift in the contact pressure while changing the seat back angle and seat belt attachment points / B-pillar location by utilizing a body pressure measurement system; (2) Identify how seat belt contact pressure and fit affect users' subjective feeling of comfort. Results from the statistical analysis shows that the seat belt contact pressure increases when the D-ring moves away from the driver in the fore-aft direction (X-axis) whereas height adjustment of the D-ring (Z-axis) is not statistically significant in terms of pressure distribution.
Technical Paper

An Integrated Optimization System for Airbag Design and Modeling by Finite Element Analysis

2003-03-03
2003-01-0506
An integrated optimization system has been developed to combine optimization algorithms with Finite Element Analysis for airbag design. A number of industry standard software packages are employed to work in coherence to complete the optimization procedure automatically with minimal user intervention. The system can be easily tailored to fit multiple performance requirements and various design constraints for different airbag systems. Compared with the commonly used Design of Experiment (DOE) method, time and computer resources requirements are greatly curtailed. The integrated optimization system was successfully used in single-chamber and dual-chamber airbag optimizations. The results proved the effectiveness of the system and demonstrated its capability in product design.
Technical Paper

Closed Loop Pressure Control System Requirements and Implementation

2011-04-12
2011-01-0391
Electro-hydraulic actuation has been used widely in automatic transmission designs. With greater demand for premium shift quality of automatic transmissions, higher pressure control accuracy of the transmission electro-hydraulic control system has become one of the main factors for meeting this growing demand. This demand has been the driving force for the development of closed loop pressure controls technology. This paper presents the further research done based upon a previously developed closed loop system. The focus for this research is on the system requirements, such as solenoid driver selection and system latency handling. Both spin-stand and test vehicle setups are discussed in detail. Test results for various configurations are given.
Technical Paper

The Effectiveness of Oxygen in Preventing Embrittlement in Air Bag Inflators Containing Gaseous Hydrogen

2006-04-03
2006-01-1188
This study examines the effectiveness of gaseous oxygen at preventing embrittlement in steel associated with exposure to gaseous hydrogen under static loading conditions. Notched C-ring samples machined from 4340 steel and heat treated to HRC 51-53 were used to test the neutrality of an oxygen-hydrogen gas mixture similar to that which may be used as a generant in an air bag inflator. The 29 percent oxygen to hydrogen gas ratio of the gas mixture was found to be sufficient to protect the steel from hydrogen embrittlement under static loading conditions. This would indicate that any steel with a hardness of HRC 51 or lower would be safe to use in gas-based air bag inflators containing a oxygen to hydrogen gas ratio of 29 percent or higher.
Technical Paper

Field Data Analysis of Rear Occupant Injuries Part I: Adults and Teenagers

2003-03-03
2003-01-0153
Since more occupants are using rear seats of vehicles, a better understanding of priorities for rear occupant protection is needed as future safety initiatives are considered. A two-part study was conducted on occupant injuries in rear seating positions. In Part I, adult and teenage occupants ≥13 years of age are investigated. In Part II, children aged 4-12 years old and toddlers and infants aged 0-3 are studied separately because of the use of infant and child seats and boosters involve different injury mechanisms and tolerances. The objectives of this study on adult and teenager, rear-seated occupants (≥13 years old) are to: 1) review accident data, 2) identify the distribution of rear occupants, and 3) analyze injury risks in various crash modes, including rollovers, frontal, side and rear impacts. Three databases were investigated: NASS-CDS, GES and FARS.
Technical Paper

Field Data Analysis of Rear Occupant Injuries Part II: Children, Toddlers and Infants

2003-03-03
2003-01-0154
Child safety continues to be an important issue in automotive safety for many reasons, including reported cases of serious injury from airbag deployments. As a result of extensive public education campaigns, most children are now placed in rear seats of vehicles. Accordingly, a more precise understanding of rear-seat occupant protection is developing as the second and third rows have become the primary seating area for children in SUVs, vans and passenger cars. The objective of this study was to review field crash and injury data from rear seats, identify the distribution of children and infants in rear seats, and analyze injury risks in various crash modes. The database used was the 1991-1999 NASS-CDS. When looking at crash configurations for 1st and 2nd row children, rollover crashes involved the highest incidence of MAIS 3+ injury, followed by frontal and side impacts. Lap-shoulder belt usage was similar for 1st and 2nd row children.
Technical Paper

Hill Hold Moding

2005-04-11
2005-01-0786
A typical problem that is encountered by drivers of vehicles with manual transmissions is rollback on an incline. This occurs when the driver is trying to coordinate the release of the brake pedal with the release of the clutch pedal and application of the accelerator all at the same time. If not done in harmony, the vehicle will roll down the incline. While the Hill Hold function is a highly desirable feature in manual transmission vehicles, it also enhances the driving experience in automatic transmission vehicles equipped with hybrid powertrains. The Hill Hold feature supports the Stop and Go performance associated with a hybrid powertrain by holding the vehicle on an incline and preventing undesired motion. The objective of this paper is to describe the implementation of the Hill Hold feature using an electric and / or a hydraulic brake control system. The paper describes the moding states in implementing the Hill Hold function at various levels of design complexity.
X