Refine Your Search

Topic

Author

Search Results

Journal Article

Real-time Sensing of Particulate Matter in a Vehicle Exhaust System

2017-03-28
2017-01-1639
Onboard diagnostic regulations require performance monitoring of diesel particulate filters used in vehicle aftertreatment systems. Delphi has developed a particulate matter (PM) sensor to perform this function. The objective of this sensor is to monitor the soot (PM) concentration in the exhaust downstream of the diesel particulate filter which provides a means to calculate filter efficiency. The particulate matter sensor monitors the deposition of soot on its internal sensing element by measuring the resistance of the deposit. Correlations are established between the soot resistance and soot mass deposited on the sensing element. Currently, the sensor provides the time interval between sensor regeneration cycles, which, with the knowledge of the exhaust gas flow parameters, is correlated to the average soot concentration.
Journal Article

Model-Based Development of AUTOSAR-Compliant Applications: Exterior Lights Module Case Study

2008-04-14
2008-01-0221
The complexity of automotive software and the needs for shorter development time and software portability require the development of new approaches and standards for software architectures. The AUTOSAR project is one of the most comprehensive and promising solutions for defining a methodology supporting a function-driven development process. Furthermore, it manifests itself as a standard for expressing compatible software interfaces at the Application Layer. This paper discusses the implementation of AUTOSAR requirements for the component structure, as well as interfaces to the Application Layer in a model-based development environment. The paper outlines the major AUTOSAR requirements for software components, provides examples of their implementation in a Simulink/Stateflow model, and describes the modelbased implementation of an operating system for running AUTOSAR software executables (“runnables”).
Journal Article

Lean Model-Based Development: Practical Approach

2013-04-08
2013-01-0437
Development pace of new embedded projects often requires usage of model-based design process (MBD). More individuals start using MBD without previous experience with tools and new processes. Matlab/Simulink/Stateflow is a common tool that is used in control applications in automotive and airspace industries. Because of its complexity, the tool has a steep learning curve. Therefore, it is vitally important to set the MBD environment that allows persons to develop real-life projects even without a deep knowledge of the tool. The quality of the product should not be compromised and the development time should not be extended due to the initial lack of knowledge of the tool by the developers. The shifting to MBD leads to changes of roles and responsibilities of algorithm designers and software implementers. This shift is due to ability of creating of efficient production code by code generators.
Journal Article

Energy Efficient HVAC System with Spot Cooling in an Automobile - Design and CFD Analysis

2012-04-16
2012-01-0641
Spot, or distributed, cooling and heating is an energy efficient way of delivering comfort to an occupant in the car. This paper describes an approach to distributed cooling in the vehicle. A two passenger CFD model of an SUV cabin was developed to obtain the solar and convective thermal loads on the vehicle, characterize the interior thermal environment and accurately evaluate the fluid-thermal environment around the occupants. The present paper focuses on the design and CFD analysis of the energy efficient HVAC system with spot cooling. The CFD model was validated with wind tunnel data for its overall accuracy. A baseline system with conventional HVAC air was first analyzed at mid and high ambient conditions. The airflow and cooling delivered to the driver and the passenger was calculated. Subsequently, spot cooling was analyzed in conjunction with a much lower conventional HVAC airflow.
Technical Paper

CFD-Aided Development of Spray for an Outwardly Opening Direct Injection Gasoline Injector

1998-02-23
980493
A high pressure outwardly opening fuel injector has been developed to produce sprays that meet the stringent requirements of gasoline direct injection (DI) combustion systems. Predictions of spray characteristics have been made using KIVA-3 in conjunction with Star-CD injector flow modeling. After some modeling iterations, the nozzle design has been optimized for the required flow, injector performance, and spray characteristics. The hardware test results of flow and spray have confirmed the numerical modeling accuracy and the spray quality. The spray's average Sauter mean diameter (SMD) is less than 15 microns at 30 mm distance from the nozzle. The DV90, defined as the drop diameter such that 90% of the total liquid volume is in drops of smaller diameter, is less than 40 microns. The maximum penetration is about 70 mm into air at atmospheric pressure. An initial spray slug is not created due to the absence of a sac volume.
Technical Paper

Rapid Algorithm Development Tools Applied to Engine Management Systems

1998-02-23
980799
Intense competition in the automotive industry requires continuous reduction in innovation cycle time, even as corporations are downsizing and system complexity is increasing. Subsequently, the application of recently introduced Rapid Algorithm Development (RAD) tools has facilitated significant advances in the development of embedded control systems. The RAD steps include system modeling, control algorithm design, simulation analysis, automated calibration design, and vehicle implementation through automatic code generation. The application of RAD tools and the associated benefits are described, specifically in the context of Engine Management Systems (EMS). Such benefits include significant reductions in development cycle time, open architecture, automated calibration, and information reuse.
Technical Paper

Model-based Development for Event-driven Applications using MATLAB: Audio Playback Case Study

2007-04-16
2007-01-0783
Audio playbacks are mechanisms which read data from a storage medium and produce commands and signals which an audio system turns into music. Playbacks are constantly changed to meet market demands, requiring that the control software be updated quickly and efficiently. This paper reviews a 12 month project using the MATLAB/Simulink/Stateflow environment for model-based development, system simulation, autocode generation, and hardware-in-the-loop (HIL) verification for playbacks which read music CDs or MP3 disks. Our team began with a “clean slate” approach to playback architecture, and demonstrated working units running production-ready code. This modular, layered architecture enables rapid development and verification of new playback mechanisms, thereby reducing the time needed to evaluate playback mechanisms and integrate into a complete infotainment system.
Technical Paper

Palladium/Rhodium Dual-Catalyst LEV 2 and Bin 4 Close-Coupled Emission Solutions

2007-04-16
2007-01-1263
Dual-monolith catalyst systems containing Pd/Rh three-way catalysts (TWCs) provide effective emission solutions for LEV2/Bin 5 and Bin 4 close-coupled applications at low PGM loadings. These systems combine washcoat technology and PGM distribution for front and rear catalysts resulting in optimal hydrocarbon and NOx light-off and transient NOx control. The dual-catalyst [Pd/Rh + Pd/Rh] systems are characterized as a function of Pd-Rh content, PGM location, and catalyst technology for 4-cyl [close-coupled + underfloor] systems and 6-cyl close-coupled applications. The current Pd/Rh dual-catalyst converters significantly reduce NOx emissions compared to earlier [Pd + Pt/Rh] or [Pd + Pd/Rh] LEV/ULEV systems by utilizing uniform Rh distribution and new OSC materials. These new design strategies particularly impact NOx performance, especially during transient A/F excursions.
Technical Paper

A Symmetry Search and Filtering Algorithm for Vision Based Pedestrian Detection System

2008-04-14
2008-01-1252
In this paper we present a fast symmetry search and filtering algorithm for monocular vision based pedestrian candidate detection application. First the ROI of symmetry search is focused on the pedestrian leg region, where the background is relatively simple ground plane. Afterward, the search region is divided into 2 × 4 sub blocks and symmetry density and distribution of each sub block is calculated. Finally, by comparing the symmetry density and distribution of the sub blocks, the correct symmetry axis of the pedestrian candidate is search and also some no-pedestrian candidates are filtered out. The results shown in this method are fast, cost effective and well suited for real-time vision applications.
Technical Paper

Emission Formation Mechanisms in a Two-Stroke Direct-Injection Engine

1998-10-19
982697
Engine tests were conducted to study the effect of fuel-air mixture preparation on the combustion and emission performance of a two-stroke direct-injection engine. The in-cylinder mixture distribution was altered by changing the injection system, injection timing, and by substituting the air in an air-assisted injector with nitrogen. Two injection systems which produce significantly different mixtures were investigated; an air-assisted injector with a highly atomized spray, and a single-fluid high pressure-swirl injector with a dense penetrating spray. The engine was operated at overall A/F ratios of 30:1, where stratification was necessary to ensure stable combustion; and at 20:1 and 15:1 where it was possible to operate in a nearly homogeneous mode. Moderate engine speeds and loads were investigated. The effects of the burning-zone A/F ratio were isolated by using nitrogen as the working fluid in the air-assist injector.
Technical Paper

Application of Lean Manufacturing to React to Fast Market Growth

2008-10-07
2008-36-0399
Brazilian automotive market has been growing faster than ever. In order to react properly to market increasing demand in terms of volume and diversity, production systems have to be carefully designed. Traditional manufacturing tends to react to demand increase by outsourcing or investing in new equipments or facilities. Lean thinking suggests that by reducing waste along the value stream it is possible to increase flexibility and freed resources to reduce the investment level required to cope customer’s needs. This paper presents two cases of a system redesign based on the lean manufacturing principles to support the demand.
Technical Paper

Comparison between FR-4 and Ceramic Substrate

2008-10-07
2008-36-0361
This paper investigates the application of thick film hybrid circuit technology on ceramic substrate in comparison to the main stream substrate FR-4 (Flame Retardant 4) for PCB implementation. The study is based on computer models for these very substrates in order to simulate the propagation of heat through convection and conduction within the material boundaries. In order to simulate electronic components surface mounted, different heat sources are randomly arranged on physical contact to the surface of the material under investigation. The results emphasize and discern the usage of both substrates and its most suitable environment verifying the application towards vehicular integration. Future study may include experimental analysis for simulated data verification and validation of thick film hybrid circuit technology for the automotive industry.
Technical Paper

Overview and Use of SAE J2735 Message Sets for Commercial Vehicles

2008-10-07
2008-01-2650
The FCC allocated the 5.9 GHz spectrum to enhance the safety and productivity of the nations transportation system. Dedicated Short Range Communication (DSRC) is a medium range wireless communication protocol that supports vehicle-to-vehicle, vehicle-to-roadside, and roadside-to-vehicle communication. It enables both public safety and licensed private transactions. DSRC contrasts cellular and Wi-Fi by providing fast acquisition, low latency communication in a relatively close communication range. IEEE is developing the Wireless Access in Vehicular Environment (WAVE) communication standards to provide the groundwork for DSRC and enable seamless, interoperable services. The WAVE architecture includes IEEE P1609.1 (Application layer), IEEE P1609.2 (Security layer), IEEE P1609.3 (Network layer), IEEE P1609.4 (Upper MAC Layer), and IEEE 802.11p (Lower MAC and Physical layers).
Technical Paper

Overview of Vehicle Infrastructure Integration (VII) Applications

2008-10-07
2008-01-2649
Vehicle Infrastructure Integration (VII) is an initiative of the US Department of Transportation to provide communications among vehicles and between vehicles and roadside infrastructure in order to increase the safety and productivity of transportation systems. It makes use of but is not restricted to the 5.9 GHz Dedicated Short Range Communication (DSRC) spectrum. There are 3 major categories of applications for VII - Highway Safety, Vehicular Mobility, and Consumer & Commercial Services. There are currently approximately 42,000 traffic fatalities a year in the United States. Reducing deaths, injuries and property damage is of the highest priority in the development of VII applications. Electronic Brake Warning, Signal Phase and Timing, and Collision Detection are among the applications dedicated to improving highway safety. Increasing traffic volume is outpacing the addition of new roadway capacity, resulting in increasing delays, congestion and frustration.
Technical Paper

Software Quality Improvements using Mahalanobis-Taguchi System (MTS)

2008-10-07
2008-36-0325
Short timing and complexes strategies are mandatory in a competitive market as automotive industry. Therefore quality problems identification during and after the coding phase, may be the difference between the business success and undesired conflicts with customer, solving problems that were not previously identified. Consequently the usage of technique Mahalanobis Taguchi System (MTS) to analyze coding metrics, create an environment to improve the final product quality and mitigate potential problems later identified.
Technical Paper

Achieving Breakthrough on Manufacturing Floor through Project-Based Organization

2009-10-06
2009-36-0333
Many companies around the world have adopted the lean thinking as their strategy to operate, in a global market where changes happen all the time. One foundation for the success of lean manufacturing appliance is the continuous improvement approach which has been considered even on company statements, or it can be also considered as part of the genetic code of any enterprise. However, if in one side the continuous improvement thinking, set people mind to look for opportunities of improvement all the time, on other hand these improvements are incremental and they do not have significant impact on company performance on both short-term and medium-term and sometimes, the activities performed by the employees are not sustainable due to the lack of structure to manage and follow up these activities.
Technical Paper

Laser Welding: An Exploratory Study towards Continuous Improvement on Stainless Steel Welding Joints

2009-10-06
2009-36-0330
The utilization of Laser welding process has increased during last years in several areas of industry, due to many benefits that can be achieved with this technology, such as: flexibility, productivity and quality. Thus, the optimization of Laser welding processes has been considered as a “green field” to be explored by Laser manufacturers, automation companies and process/project engineers. Nowadays there are few researches that provide a roadmap for Laser welding processes improvement that approaches both the aspects and characteristics applied to evaluate the Laser weld application performance. Therefore, this paper has per its main purpose through an exploratory study to provide parameters toward continuous improvement of Laser welding process considering both types of Lasers: Laser spot weld and Laser seam weld of stainless steel joints, thus this work may be considered as theoretical and practical reference to be applied by people involved with Laser welding applications.
Technical Paper

Automotive Miniaturization Trend: Challenges for Wiring Harness Manufacturing

2010-10-06
2010-36-0160
One of the most evident trends in automotive sector is miniaturization. It is related to considerable benefits due to the potential of mass reduction, cost reduction and efficiency improvement. It involves many different automobile components and most of them are facing challenges to achieve the targets defined by car makers and final consumers. Specifically for wiring harness, it seems to be many manufacturing and process challenges to be surpassed in order to fully perceive the benefits expected with miniaturization, internally and externally. So this article aims to present an overview of literature as well as reporting of experts on this issue mentioning some of the challenges that global automotive wiring harness manufacturers are facing. Subjects as assembly automation, terminal connection and small gauge cables are discussed in the article and also a general overview of how those problems are being addressed in order to meet customer requirements.
Technical Paper

Nomadic Device Connectivity Using the AMI-C HMI Architecture

2009-04-20
2009-01-0959
Nomadic mobile consumer electronic (CE) devices are growing in functionality and popularity. Some of these devices, such as navigation systems, are being used in vehicles as a lower cost alternative to integrated vehicle options. Other devices, such as MP-3 players, are becoming the preferred source of music on the go. Wireless nomadic devices are now capable of accessing E-mail and other Internet-based functions. Automakers are beginning to recognize the importance of integrating support for such devices to facilitate their use in vehicles. A key element of this integration is the ability of the vehicle HMI to support both the operation of nomadic devices as well as the display of content from such devices. This paper presents an example of how a nomadic device can be properly integrated with the vehicle HMI using the AMI-C HMI architecture. In particular, a commercial nomadic device was used to stream MP3 content to a vehicle radio using an 802.11 wireless connection.
Technical Paper

FMERA - Failure Modes, Effects, and (Financial) Risk Analysis

2001-03-05
2001-01-0375
Continuous Improvement activities are often based on a list of top concerns, such as highest RPN (Risk Priority Number) on the PFMEA (Process Failure Modes and Effects Analysis), warranty items, or scrap rates. But a company is in business to make a profit for its stockholders. Therefore, money should be considered, rather than just technical engineering tools and RPNs. Current PFMEA methodology (See references 1 and 2) focuses on delivering quality parts to the customer. The financial impact of various potential process problems is not considered directly. A new and extended technique called FMERA (pronounced Fuh-MAIR-uh) can identify and prioritize the process part of potential problems that have the most financial impact on an operation. Alternatives can be evaluated to maximize the financial benefits. FMERA is a method for getting the voice of the stockholder into process decisions.
X