Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Development and Testing of a High Performance Quadro-Groove Heat Pipe

1991-07-01
911481
This paper describes the development, manufacturing and testing of an advanced heat pipe profile possessing separated arteries and small radial grooves for condensate transportation. The objective of the development was to design a heat pipe with improved heat transport capability limited by an outer cross-section of 15 mm square. The concept of the new heat pipe is based on an aluminium extrusion profile with rectangular outer shape. The central vapour core of 9.2 mm diameter is connected via small connection slots with four individual liquid channels located in the corner areas of the profile. So the liquid flow in the four channels is decoupled from vapour flow, both streaming in opposite directions. Decreasing of the pressure drop in the liquid channels and decreasing the entrainment of liquid flow to the vapour flow resulted in improved heat transport capability.
Technical Paper

Computer Aided Simulation, Monitoring and Testdata Analysis for Thermophysical Systems

1993-07-01
932133
As a consequence of the continuously increasing complexity of design, development and qualification of modern spacecraft subsystems, computer aided tools become increasingly important for solving the various engineering tasks in these fields. In the framework of development tasks for satellites and space stations, e.g. ERS-I/II, ROSAT, CLUSTER, SOHO, COLUMBUS-ECLSS, and HERMES a software environment has been developed at Dornier GmbH in recent years, which allows thermal analysis, thermal control and space environment control for system simulation as well as for detained component level simulation, monitoring and testdata evaluation. COSITHERM is a modular software package for the prediction of thermal radiation effects. SIMTAS can be used for detailed analysis of single system components as well as for the prediction of system response of arbitrarily connect components.
Technical Paper

Revised Cabin Loop Concept for COLUMBUS APM

1994-06-01
941306
The redesign of the international Space Station Freedom (SSF) and funding constraints in the ESA member states caused a redirection of the development effort for the Attached Pressurised Module (APM). For the ECLSS the most important changes are the reduction in length of the module in order to make it compatible with the ARIANE V capabilities and the more severe cost constraints. As a result new concepts for the cabin loop were investigated leading to a decrease in cabin loop power consumption, mass and volume and a reduced development effort due to a lower number of items. In the previous concept a module internal loop with a flow rate of 864m3/hr and an Intermodule Ventilation (IMV) flow rate for air revitalisation to the station with 240m3/hr were installed. The revised boundary conditions with a reduced overall massflow rate of 540m3/hr allows the combination of the cabin loop and the IMV with limited impact on the total power consumption.
X