Refine Your Search

Topic

Search Results

Journal Article

Vibration Behavior Analysis of Tire Bending Mode Exciting Lateral Axial Forces

2013-05-13
2013-01-1911
The demand to reduce noise in the passenger cars is increasing. Tire vibration characteristics must be considered when studying road noise because of the strong interaction between tire vibration characteristics and interior car noise. Car manufacturers are keenly interested in studies on the prediction of NVH (Noise, Vibration and Harshness) performance, including viewing tires as substructure. Recently, studies have illustrated the effect that tire lateral bending mode have has on road noise, while most past studies of tire vibration focused on the circumference mode, which excited the vertical spindle force. Therefore, further study of tire lateral bending mode is necessary. Modeling of the tire lateral bending mode is described in this paper. First, lateral spindle force is measured under tire rolling conditions. Second, experimental modal analysis is performed to grasp tire lateral bending mode. Finally, a tire vibration model is built using the cylindrical shell theory.
Journal Article

Prediction of Spray Behavior in Injected by Urea SCR Injector and the Reaction Products

2017-10-08
2017-01-2375
In the urea SCR system, urea solution is injected by injector installed in the front stage of the SCR catalyst, and NOx can be purified on the SCR catalyst by using NH3 generated by the chemical reaction of urea. NH3 is produced by thermolysis of urea and hydrolysis of isocyanic acid after evaporation of water in the urea solution. But, biuret and cyanuric acid which may cause deposit are sometimes generated by the chemical reactions without generating NH3. Spray behavior and chemical reaction of urea solution injected into the tail-pipe are complicated. The purpose of this study is to reveal the spray behavior and NH3 generation process in the tail-pipe, and to construct the model capable of predicting those accurately. In this report, the impingement spray behavior is clarified by scattered light method in high temperature flow field. Liquid film adhering to the wall and deposit generated after evaporation of water from the liquid film are photographed by the digital camera.
Technical Paper

Distribution of Vapor Concentration in a Diesel Spray Impinging on a Flat Wall by Means of Exciplex Fluorescence Method -In Case of High Injection Pressure-

1997-10-01
972916
Diesel sprays injected into a combustion chamber of a small sized high-speed CI engine impinge surely on a piston surface and a cylinder wall. As a consequence, their vaporization, mixture formation and combustion processes are affected by impingement phenomena. And the other important factors affecting on the processes is the injection pressure. Then, the distribution of the vapor concentration in a single diesel spray impinging on a flat and hot wall was experimented by the exciplex fluorescence method, as a simple case. The injection pressure was varied in the range from 55 MPa to 120 MPa. It is found that the distribution of the vapor concentration in this case is much leaner than that in the case of the low injection pressure of 17.8MPa.
Technical Paper

Study on Thermo-plastic Deformation for One-Piece Brake Disks

1998-02-23
980593
Braking tests under overloading were carried out using large one-piece brake disks having eyebrow-shaped holes as decoration. When the number of braking cycles was more than five, permanent deflection of the disks was observed. When the number of braking cycles was less than six, no appreciable deflection occured. The experiment revealed that such deflection occurrs during the cooling process after the final braking cycle. The mechanism for this phenomenon is explained based on the deflection-time record in conjunction with the temperature distribution of disks and its variation with respect to time. The key for this phenomenon is yielding in tension at the bridges between holes. The deflection occurs due to elastic-plastic buckling caused by shrinkage of the flange. Numerical simulations were successfully conducted by using a general 3D FEM in consideration of geometrical and material non-linearities.
Technical Paper

Modification of Strain Distribution on Contact Surface of Shoe to Reduce Low Frequency Squeals for Brake Disc with Small Holes

2010-10-10
2010-01-1715
The purpose of this study is to propose an effective model to estimate the excitation force accompanied with stick-slip between shoe and disc, considering the strain distribution on contact surface of the shoe, and then to propose an effective concept to design the brake which reduced the brake squeal under practical use. In order to investigate the influence of configuration of the hole, three types of discs were prepared in which the size of holes was different. The SPL (Sound Pressure Level) and the frequency of squeal for three types of discs were measured when the brake squeal was observed at conditions of low sliding speed. The change of stability of the brake shoe passing on hole was analyzed by 2-D simplified brake system model.
Technical Paper

Distribution of Vapor Concentration of Fuel Mixed with High Volatility Component and Low Volatility Component

2010-10-25
2010-01-2274
The premixed charge compression ignition (PCCI) combustion in a compression ignition (Cl) engine is one of countermeasures against the very much severe regulation for exhaust gas of engine out. The authors have been proposed to use the fuel mixed with high volatility component and low volatility component to actualize PCCI combustion. This kind of fuel injected forms a fine and lean spray by the flash boiling phenomena which depends on the pressure and the temperature. The role of the former fuel is to decrease in the generation of particulate matters (PM) and that of the latter one is to break out the ignition. Thus, it is very much significant to find the distribution of vapor concentration of both fuels in a spray. This paper describes both distributions in a single diesel spray by use of the technique of laser induced fluorescence (LIF) in a constant volume chamber with high temperature at high pressure as the fundamental research.
Technical Paper

Analysis of Air Ventilation Performance based on Aerodynamics Simulation

2001-03-05
2001-01-0296
The shape and configuration of the air ventilation system determines the ventilation performance while influencing the design and structure of a car. It is therefore necessary to decide the configuration of the air ventilation system in the early stages of design. We tried to analyze the pressure level of the ventilation ducts from the aerodynamics simulation results added to the cowl top which had the ventilation intake duct, and so on. Thus we succeeded in designing a new development process that can be used to predict the ventilation performance in a shorter time without the use of prototypes.
Technical Paper

The development of vibration transmissivity calculation of full-foam seat cushions

2000-06-12
2000-05-0351
Full-foam-type seat cushion for vehicle is made of such elements as panel, foam pad, and surface seat and each element individually effects on dynamic vibration comfort performance during riding. The most important requirement is to reduce resonance magnification of seat close to 6 Hz, which is the natural frequency of the human body''s internal organs. Conventionally, the prediction of the resonance frequency characteristics of the seat cushion is seldom done by calculation at design stage before evaluation of prototype test. This paper reports that it becomes possible to predict vibration property of seat cushion at design stage by solving vibration equation, which is obtained by replacing seat cushion structure with vibration system model having spring element and damping element equivalent to designed seat cushion and by making graph of resonance frequency characteristics using calculation program provided in this paper.
Technical Paper

Fundamental Research on Unsteady Pre-mixed Combustion in Non-Uniform Distribution of Fuel Concentration

2001-09-24
2001-01-3487
It is significant for understanding the phenomena in a stratified charge engine and an SI engine with direct injection system to carry out the fundamental research. The experiments were conducted in a constant volume chamber with atmospheric condition. The pre-mixed charge composed of ethylene and air was charged with various equivalence ratio, the second charge with the same composition was injected into the chamber, thereafter, the combustion started by a spark plug. The phenomena were analyzed by use of the experimental results of shadowgraph, [OH] natural emission, pressure history and NOx and UHC in the exhaust gas.
Technical Paper

A Study on a Metal Pushing V-belt type CVT - A Novel Approach to Characterize the Friction Between Blocks and a Pulley, and Shifting Mechanisms

2002-03-04
2002-01-0697
In Metal V-belt type CVT, an elastic deformation of blocks determines the shifting speed and the pulley thrusts at transitional state. Both driving and driven pulley thrusts were calculated by considering the forces acting on blocks at a pulley entrance, which agreed with the experimental results at not only steady state but also transitional state. The frictional performance of CVT fluids and the frictional characteristics between blocks and a pulley were evaluated by applying the mean coefficient of friction as a friction parameter. It was found from the experiments that the estimated coefficient of friction of CVT fluids was not constant with respect to operating conditions. It changed due to relative sliding speed between blocks and the pulley, sliding direction and normal pressure acting on V-surface of the block.
Technical Paper

Stratification Features of Swirl Nozzle Sprays and Slit Nozzle Spray in DI Gasoline Combustion

2003-05-19
2003-01-1812
The stratification feature of DI gasoline combustion was studied by using a constant volume combustion vessel. An index of stratification degree, defined as volumetric burning velocity, has been proposed based on the thermodynamic analysis of the indicated pressure data. The burning feature analysis using this stratification degree and the fuel vapor concentration measurement using He-Ne laser ray absorption method were carried out for the swirl nozzle spray with 90° cone angle and the slit nozzle spray with 60° fan angle. Ambient pressure and ambient temperature were changed from atmospheric condition to 0.5∼0.6 MPa and 465 K, respectively. Air Swirl with swirl ratio of 0∼1.0 were added for the 90° swirl nozzle spray. Single component fuels with different volatility and self-ignitability from each other were used besides gasoline fuel. The major findings are as follows. High ambient temperature improves stratification degree due to the enhanced fuel vaporization and vapor diffusion.
Technical Paper

Combustion in a Small DI Diesel Engine at Starting

1992-02-01
920697
It is unavoidable that a DI diesel engine exhausts a blue and white smoke at starting, especially in the cold atmosphere. In the experiments presented here, a small DI diesel engine started under the conditions of coolant and suction air whose minimum temperatures were 255 K and 268 K, respectively. The flame was photographed by high-speed photography, the temperature of flame and the soot concentration were measured by two-color method, and CO2 concentration was detected by luminous method. The engine cannot be started over several cycles when the coolant temperature is 255 K and suction air temperature is 268 K. As the temperature of coolant and suction air are decreasing, the maxima of the cylinder pressure, the flame temperature, the soot concentration and CO2 concentration are decreasing. Luminous small dots or small lumps of flame become scattered in the piston cavity.
Technical Paper

Knocking Phenomena in a Rapid Compression and Expansion Machine

1992-02-01
920064
In this study, a rapid compression and expansion machine(RCEM) with a pancake combustion chamber was designed to investigate fundamentally on the knocking phenomena in spark ignition(S.I) engines. This RCEM is intended to simulate combustion in an actual engine. The homogeneous pre-mixture of n-pentane and air was charged into a quiescent atmosphere of the chamber. Then, the combustion field become simpler in this machine than it in a real S.I. engine. Also, the combustion phenomena, that is a cylinder pressure history, the behavior of flame propagation and so on, with high reproducibility are realized in this machine. The phenomena caught in this experiment were so-called low speed knocking. And, this knocking characteristics such as a knock intensity and a knock mass fraction were revealed by the cylinder pressure analysis varying the charge pressure and the equivalence ratio of the mixture, a compression ratio and an ignition timing.
Technical Paper

Atomization of Spray under Low-Pressure Field from Pintle Type Gasoline Injector

1992-02-01
920382
This paper presents an atomization mechanism of a spray injected into the low-pressure field, as the subject of injection system in a suction manifold of gasoline engine. Pure liquid fuel, which is n-Pentane or n-Hexane is injected into quiescent gaseous atmosphere at room-temperature and low- pressure through pintle type electronic control injector. Fuel sprays are observed by taking photographs for variation of the back pressure and the changes in spray characteristics with the back pressure below atmospheric pressure are examined in detail. In particular, in the case of the back pressure below the saturated vapor pressure of fuel, the atomization mechanism is discussed from a viewpoint of flash boiling phenomena, those are bubble growth rate and so on.
Technical Paper

Visualization of the Cavitating Flow inside the Nozzle Hole Using by Enlarged Acrylic Nozzle

2011-08-30
2011-01-2062
In this study, it is purpose to make clear the effect of cavitation phenomenon on the spray atomization. In this report, the cavitation phenomenon inside the nozzle hole was visualized and the pressure measurements along the wall of the nozzle hole were carried out by use of 25-times enlarged acrylic nozzle. For the representatives of regular gasoline, single and two-component fuels were used as a test fuel. In addition, various cavitating flow patterns same as experimental conditions were simulated by use of Barotropic model incorporated in commercial code of Star-CD scheme, and compared with experimental results.
Technical Paper

Identification of Tire Equivalent Stiffness for Prediction of Vertical Spindle Forces

2011-10-06
2011-28-0093
The research into vibration characteristics of a loaded and rolling tire is essential for the prediction of spindle forces. There are tire vibration characteristics one of which is the first natural frequency of a loaded and rolling tire is lower than that of an unrolling tire. The vibration characteristics, for a loaded and rolling tire, are affected by the effect of rotation, restrictions of the vibration due to road contact, and the behavior of rubber dependent on amplitude strain. The consideration of the degradation of natural frequency is therefore necessary in the tire model for prediction of spindle forces. This paper describes an identification method for the tire equivalent stiffness of a tire model focused on vertical spindle forces. The first mode is dominant in vertical spindle forces. First, the natural frequencies in rolling and unrolling tires are identified by operational impact test.
Technical Paper

Modelling of Atomization Process in Flash Boiling Spray

1994-10-01
941925
This paper presents the analysis of atomization and vaporization processes in a flash boiling spray based on experimental results obtained from injection systems in the suction manifold of a gasoline engine. Two kinds of liquid fuel, n-Pentane and n-Hexane, were injected into quiescent atmosphere at room-temperature and low-pressure through a pintle type injector with electronic control. The spray characteristics of both fuels below various atmospheric pressures were investigated in detail by taking photography. Then, in the region of flash boiling, where the back pressure was below the saturated vapor pressure of fuel, the bubble nucleation process due to the flash boiling was modelled by both the measurement results of bubble and the nucleation rate equation using the degree of superheat of the liquid fuel.
Technical Paper

CFD In-Cylinder Flow Simulation of an Engine and Flow Visualization

1995-02-01
950288
Multi-dimensional transient scavenging flow simulation of a schnule scavenged two-stroke cycle engine has been carried out under motoring conditions. This paper presents the differences of the flow characteristics between crankcase compression and roots blower scavenging, obtained by different initial and boundary conditions of scavenging pressure. Furthermore, the influence of scavenging port's slant angle are shown by using the CFD visualization technique.
Technical Paper

New Concept on Lower Exhaust Emission of Diesel Engine

1995-09-01
952062
One of countermeasures for exhaust emissions from a diesel engine, especially, DI diesel engine, is the use of a super high pressure injection system with a small hole diameter. However, the system needs greater driving force than that with normal injection pressure, and its demerit is increase in NOx, although soot is decreasing. Then, authors propose the new concept on the simultaneous reduction of NOx and soot. The concept is that the utilization of flash boiling phenomenon in a diesel engine. The phenomenon can be realized by use of the injection of fuel oil with CO2 gas dissolved. Flash boiling facilitates the distinguished atomization of fuel oil and CO2 gas contributes to realizes the internal EGR during combustion. Fundamental information on the characteristics of a flash boiling spray of n-tridecane with CO2 gas dissolved is described in this paper, as a first step.
Technical Paper

A Simple Modeling for Analyzing the Load Distribution of Toothed Belts Under Fluctuating Torque Loading

1995-02-01
950542
It is very important to know the load distribution in pulleys to predict the life of toothed belts. In this study, a simple model consists of springs and friction elements has been developed for numerical analysis of the load distribution. A sample problem with steady pulley motion for a two pulley system was analyzed. The analytical result was compared with the experimental result. It was also compared with the numerical result by the alternative model using FEM. Relatively good agreements between them were obtained. A typical problem for the two pulley system subjected to fluctuating torque loadings was also analyzed by the present model. The calculated result shows a large difference in tooth load distribution between the steady state case and the unsteady state one.
X