Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Optimization of Manufacturing Process of Glass Fibers/Phenol Composites. Effects of Solidification Conditions, Fiber Length and Additional Materials on their Mechanical Properties

2003-03-03
2003-01-1128
The aim of these experiments is to determine the best way to obtain high mechanical properties for phenol resin and glass fibers based composites. Various ways of fabricating the material were studied, as well as its best composition. The conditions of drying, molding processes were optimized. From the most conventional method, using ethanol as a solvent to newer ones, including continuous ways of processing and the use of water instead of ethanol, a lot of possibilities exist to produce such a material. This paper explains the advantages and drawbacks of a whole range of manufacturing processes.
Technical Paper

Change of Relative Local Velocity in Pulley Groove at Sliding between Belt and Pulleys for Metal Pushing V-Belt Type CVT

2023-10-24
2023-01-1851
The objective of this study was to investigate the change of relative local velocity in each pulley groove at sliding between the belt and pulleys for a metal-pushing V-belt type CVT where micro elastic slips were inevitably accompanied to transmit power, while the transmissions were widely adopted to provide comfortable driving by continuously automatically adjusting the speed ratio. Local changes of wrapping radial position and velocity of the belt in each pulley groove of the CVT were simultaneously measured by a potentiometer with a spinning roller in the experiments. The mechanical power generated by the AC motor was transmitted through the CVT unit from the driving axis to the driven axis as usual under practical conditions while the speed ratio was set to 1.0. Pulley clamping force was applied by oil pressure.
Technical Paper

Prediction of Crack Initiation for One-Piece Type Brake Disc for Motorcycles under Overload Condition

2005-10-12
2005-32-0047
A prediction method was proposed for crack initiation in one-piece type brake discs under extreme braking conditions. Braking tests under extreme loading conditions were conducted by using sample discs. The variations of internal temperatures and surface strains at several locations were measured by using thermocouples and strain gages. In order to obtain the S-N curve of the disc material, specimens with a hole in their center were used for the fatigue test in which an alternative strain was cyclically applied. The numbers of strain cycles, when a 0.3mm crack initiated from the hole, were analyzed by the Weibull plot. The maximum and minimum strains at the hole edge were estimated by calculation considering the temperature variation with respect to time as well as the strain induced by friction due to braking pads. The number of cycles corresponding to the strain amplitude range was estimated by the rain-flow method.
X