Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Droplet Behaviors of DI Gasoline Wall Impinging Spray by Spray Slicer

2020-04-14
2020-01-1152
Owing to the small size of engines and high injection pressures, it is difficult to avoid the fuel spray impingement on the combustion cylinder wall and piston head in Direct Injection Spark Ignition (DISI) engine, which is a possible source of hydrocarbons and soot emission. As a result, the droplets size and distribution are significantly important to evaluate the atomization and predict the impingement behaviors, such as stick, spread or splash. However, the microscopic behaviors of droplets are seldom reported due to the high density of small droplets, especially under high pressure conditions. In order to solve this problem, a “spray slicer” was designed to cut the spray before impingement as a sheet one to observe the droplets clearly. The experiment was performed in a constant volume chamber under non-evaporation condition, and a mini-sac injector with single hole was used.
Technical Paper

Unsteady Flow Analysis Method for Automobile LED Headlamp Based on Massively Parallel CFD Considering the External Environment

2020-04-14
2020-01-0636
The aims of this study are to understand the mechanism of dew condensation and try to prevent it on automobile headlamp. In this case, it is necessary to build the computational model of the headlamp with all details accurately. In addition, the simulation framework for predicting the turbulent flow field has to be accompanied with the high temperature heat source and consider high accuracy of the wall heat transfer in the running environment of a vehicle. Moreover, it is a challenging task that using CFD (Computational Fluid Dynamics) to understand the mechanism of the flow field inside the light emitting diode (LED) headlamp with a rotating fan to cool the light sources because of the complicated internal structures and significant heat transfer. In this paper, the method of compressible turbulence has been constructed which based on hierarchical cartesian grid using the HPC (High Performance Computing) environment.
Journal Article

Modeling of Auto-Ignition and Combustion Processes for Dual-Component Fuel Spray

2011-09-11
2011-24-0001
Auto-ignition and combustion processes of dual-component fuel spray were numerically studied. A source code of SUPERTRAPP (developed by NIST), which is capable of predicting thermodynamic and transportation properties of pure fluids and fluid mixtures containing up to 20 components, was incorporated into KIVA3V to provide physical fuel properties and vapor-liquid equilibrium calculations. Low temperature oxidation reaction, which is of importance in ignition process of hydrocarbon fuels, as well as negative temperature coefficient behavior was taken into account using the multistep kinetics ignition prediction based on Shell model, while a global single-step mechanism was employed to account for high temperature oxidation reaction. Computational results with the present multi-component fuel model were validated by comparing with experimental data of spray combustion obtained in a constant volume vessel.
Journal Article

Real-Time Vehicle Detection using a Single Rear Camera for a Blind Spot Warning System

2012-04-16
2012-01-0293
This paper describes a vision-based vehicle detection system for a blind spot warning function. This detection system has been designed to provide ample performance as a driving safety support system, while streamlining the image processing algorithm so that it can be processed using the computational power of an existing ECU. The procedure used by the system to detect a vehicle in a blind spot is as follows. The system consists of four functional components: obstacle detection, velocity estimation, vertical edge detection, and final classification. In obstacle detection, a predicted image is generated under the assumption that the road surface is a perfectly flat plane, and then an object is detected based on a histogram that is created by comparing the predicted image and an actually observed image. The velocity of the object is estimated by tracking the histogram over time, assuming that both the object and the host vehicle are traveling in the same direction.
Technical Paper

Heat Flux between Impinged Diesel Spray and Flat Wall

1991-11-01
912460
In a high-speed DI diesel engine, fuel sprays impinge surely on a wall of a piston cavity. Then the phenomenon of the heat transfer between the impinged spray and the wall appears and it has the strong effect on the combustion processes of the engine. The purpose of this study are to clarify basically the heat transfer characteristics. In the experiments, the fuel was injected into the quiescent inert atmosphere with a high temperature under high pressure field, and an evaporative single diesel spray was impinging upon a flat wall. And, the temperature distribution on the wall surface in a radial direction was detected by the Loex-Constantan thin film thermo-couples. Thus, the heat flux between the impinged spray and the wall surface was calculated from the temperature profile within the wall by Fourier's equation using the finite difference method, under the assumption of the one-dimensional heat conduction.
Technical Paper

Effect of ADOIL TAC Additive on Diesel Combustion

1991-11-01
912555
Some papers on the combustion in a diesel engine have been already presented to discuss the effect of the additive called ADOIL TAC. A bottom view DI diesel engine driven at 980rpm with no load was used in the experiment presented here, in order to make clear this effect. JIS second class light diesel fuel oil was injected through a hole nozzle at the normal test run. The additive was intermixed 0.01 vol. % in this fuel oil, in the experiments to compare with the normal combustion. The flame was taken by direct high-speed photography. Profiles of flame temperature and KL were detected on the film by image processing, applying the two-color method. Soot was visualized by high-speed laser shadowgraphy, and the heat release rate was calculated using the cylinder pressure diagram. Discussion on the effect of the additive on the combustion phenomena was made by using all the data.
Technical Paper

Effect of Initial Fuel Temperature on Spray Characteristics of Multicomponent Fuel

2020-09-15
2020-01-2113
Fuel design concept has been proposed for low emission and combustion control in engine systems. In this concept, the multicomponent fuels, which are mixed with a high volatility fuel (gasoline or gaseous fuel components) and a low volatility fuel (gas oil or fuel oil components), are used for artificial control of fuel properties. In addition, these multicomponent fuels can easily lead to flash boiling which promote atomization and vaporization in the spray process. In order to understand atomization and vaporization process of multicomponent fuels in detail, the model for flash boiling spray of multicomponent fuel have been constructed and implemented into KIVA3V rel.2. This model considers the detailed physical properties and evaporation process of multicomponent fuel and the bubble nucleation, growth and disruption in a nozzle orifice and injected fuel droplets.
Journal Article

Simultaneous Reduction of Pressure Rise Rate and Emissions in a Compression Ignition Engine by Use of Dual-Component Fuel Spray

2012-10-23
2012-32-0031
Ignition, combustion and emissions characteristics of dual-component fuel spray were examined for ranges of injection timing and intake-air oxygen concentration. Fuels used were binary mixtures of gasoline-like component i-octane (cetane number 12, boiling point 372 K) and diesel fuel-like component n-tridecane (cetane number 88, boiling point 510 K). Mass fraction of i-octane was also changed as the experimental variable. The experimental study was carried out in a single cylinder compression ignition engine equipped with a common-rail injection system and an exhaust gas recirculation system. The results demonstrated that the increase of the i-octane mass fraction with optimizations of injection timing and intake oxygen concentration reduced pressure rise rate and soot and NOx emissions without deterioration of indicated thermal efficiency.
Technical Paper

Effect of Operational Condition on PM in Exhausted Gas through CI Engine

2007-10-29
2007-01-4077
The particulate matters (PM) containing in the exhaust gas through a CI engine affects strongly the human health. Thus, it is very significant to measure the mechanism of PM itself generation for actualization of a clean CI engine. On the standpoint mentioned above, the authors carried out the experiments of the characteristics of PM generated from a small high speed DI CI engine with a single cylinder. The variables were the equivalence ratio, the injection timing, the EGR rate and the sort of fuel. As a result, the effect of experimental condition on the distribution of PM is clear through experiments.
Technical Paper

A challenge to vapor distribution measurement of multi-component evaporating fuel spray via laser absorption-scattering (LAS) technique

2007-07-23
2007-01-1892
In the present study, a challenge has been made to quantitatively determine the vapor phase concentration distributions in an evaporating multicomponent fuel spray using the LAS imaging technique. The theoretical considerations were particularly given when applying the LAS imaging technique to the multicomponent fuel spray and reconstructing the vapor concentration distributions from the spray images.
Technical Paper

A Study of PM Emission Characteristics of Diesel Vehicle Fueled with GTL

2007-01-23
2007-01-0028
In this study, diesel exhaust emission characteristics were investigated as GTL (Gas To Liquid) fuel was applied to a heavy-duty diesel truck which had been developed to match a Japanese new long-term exhaust emission regulation (NOx < 2.0 g/kWh, PM < 0.027 g/kWh). The results in this study show that although the test vehicle has advanced technologies (e.g. high pressure fuel injection, oxidation catalyst, and urea-SCR aftertreatment system, etc.) which are applied to reduce diesel emissions, the neat GTL fuel has a great advantage to reduce particulate matter emissions and poly aromatic hydrocarbons. And regarding nano-size PM emissions, nuclei mode particles emitted during idling are significantly decreased by using the GTL fuel.
Technical Paper

Studies of Fuel Properties and Oxidation Stability of Biodiesel Fuel

2007-01-23
2007-01-0073
Biodiesel fuel has attracted much attention as a carbon neutral fuel because it is made from vegetable oil. Especially in Southeast Asia, there are numerous biofuel resources, such as palm oil and coconut oil, and it is desirable to utilize these for CO2 reduction. In this paper, we evaluate the properties of biodiesel fuel and biodiesel blended diesel oil. The low temperature performance of palm oil methyl ester (PME) is poor and it affects low temperature performance, even if the PME blending rate is low. The oxidation stability is a very important property of biodiesel fuel because degraded biodiesel fuel produces organic acids and polymeric substances. PME contains mainly saturated fatty acids methyl esters, so the oxidation stability is better than other fats and oils. When containing antioxidants such as beta carotene, biodiesel's oxidation stability is improved.
Technical Paper

Large Eddy Simulation of Diesel Spray Combustion with Eddy-Dissipation Model and CIP Method by Use of KIVALES

2007-04-16
2007-01-0247
Three-dimensional large eddy simulation (LES) has been conducted for a diesel spray flame using KIVALES which is LES version of KIVA code. Modified TAB model, velocity interpolation model and rigid sphere model are used to improve the prediction of the fuel-mixture process in the diesel spray. Combustion is simulated using the Eddy-Dissipation model. CIP method was incorporated into the KIVALES in order to suppress the numerical instability on the combustible flow. The formation of soot and NO was simulated using Hiroyasu model and KIVA original model. Three different grid resolutions were used to examine the grid dependency. The result shows that the LES approach with 0.5 mm grid size is able to resolve the instantaneous spray with the intermittency in the spray periphery, the axi-symmetric shape and meandering flow after the end of injection as shown in the experimental results.
Technical Paper

Study on Characteristics of Auto-Ignition and Combustion of Unsteady Synthetic Gas Jet

2007-04-16
2007-01-0629
It is thought that the synthetic gas, including hydrogen and carbon monoxide, has a potential to be an alternative fuel for internal combustion engines, because a heating value of the synthetic gas is higher than one of hydrogen or natural gas. A purpose of this study is to acquire stable auto-ignition and combustion of the synthetic gas which is supposed to be applied into a direct-injection compression ignition engine. In this study, the effects of ambient gas temperatures and oxygen concentrations on auto-ignition characteristics of the synthetic gas with changing percentage of hydrogen (H2) or carbon monoxide (CO) concentrations in the synthetic gas. An electronically-controlled, hydraulically-actuated gas injector was used to control a precise injection timing and period of gaseous fuels, and the experiments were conducted in an optically accessible, constant-volume combustion chamber under simulated quiescent diesel engine conditions.
Technical Paper

A Study of Fuel Auto-ignitability on Premixed Compression Ignition Characteristics

2008-04-14
2008-01-0062
It has been clarified that diesel fuel properties have a great effect on the exhaust emissions and fuel consumption of a conventional diesel combustion regime. And as other diesel combustion regimes are applied in order to improve exhaust emissions and fuel consumption, it can be supposed that the fuel properties also have significant effects. The purpose of this study is to propose the optimum diesel fuel properties for a premixed compression ignition (PCI) combustion regime. In this paper, the effect of the auto-ignitability of diesel fuels on exhaust emissions and fuel consumption was evaluated using a heavy-duty single-cylinder test engine. In all experiments, fuels were injected using an electronically controlled, common-rail diesel fuel injector, and most experiments were conducted under high EGR conditions in order to reduce NOx emissions.
Technical Paper

Effect of Convective Schemes on LES of Fuel Spray by Use of KIVALES

2008-04-14
2008-01-0930
In this study, a numerical experiment using a 2D convective equation and LES of an evaporative diesel spray for different convective schemes has been performed to examine effects of convective schemes on a fuel-air mixture formation of the diesel spray simulation and to determine the convective scheme used in KIVALES. In addition to KIVALES original schemes, such as QSOU, PDC and IDC, CIP was incorporated into KIVALES in order to calculate the convective terms with low numerical diffusion. The numerical experiment using the 2D convective equation showed that the numerical diffusion of CIP scheme was lowest in the convective schemes used in present study. However CIP scheme used was not a monotone scheme completely due to the overshoot and the undershoot of the scalar provided near the boundary. Hence, CIP scheme was employed for only the convective term of the LES momentum equation, while the other convective schemes were calculated using QSOU, which is a monotone scheme.
Technical Paper

Prediction of Spindle Force Using Measured Road Forces on Rolling Tire

2009-05-19
2009-01-2107
Improvement of vehicle interior noise is desired in recent years in the modern world of the demand of low weight, good fuel economy and offering technical advantages strongly. The dynamic force transmission of rolling tires from the road surface to the spindles is a critical factor in vehicle interior noise. We focus on structure-borne noise transferred through the spindle. It is necessary for effort of the effective tire/road noise reduction to predict spindle force excited by tire/road contact. The major issues in predicting spindle forces are to clarify the distribution of road forces and how to input on the simulation model. Therefore, it is important that road forces are measured accurately on the rolling tire. First, the dynamic road forces on the rolling tire are measured by using the tri-axial force sensor directly. In efforts to reduce interior noise due to structure-borne noise, it is necessary to predict spindle forces excited by the tire/road contact.
Technical Paper

Visualization of Micro Structure in a Diesel Spray by Use of Photography with High Spatial Resolution

2008-10-06
2008-01-2465
It is very much necessary for researchers and engineers whose work is the field of combustion in a CI engine to find the information of droplets in a diesel spray. The information is strongly required to construct the model of spray built in the numerical code for its simulation and to be used for the verification of the accuracy of the calculation. This paper describes the photographing system with high spatial resolution, the distribution of droplet size and the vortex scale caused by the droplets motion by means of this system.
Technical Paper

On-Board Measurement of Engine Performance and Emissions in Diesel Vehicle Operated with Bio-diesel Fuel

2004-03-08
2004-01-0083
This paper describes the results of on-board measurement of engine performance and emissions in diesel vehicle operated with bio-diesel fuels. Here, two waste-cooking oils were investigated. One fuel is a waste-cooking oil methyl esters. This fuel is actually applied to a garbage collection vehicle with DI diesel engine (B100) and the city bus (B20; 80% gas oil is mixed into B100 in volume) as an alternative fuel of gas oil in Kyoto City. Another one is a fuel with ozone treatment by removing impurities from raw waste-cooking oils. Here, in order to improve the fuel properties, kerosene is mixed 70% volume in this fuel. This mixed fuel (i-BDF) is applied into several tracks and buses in Wakayama City. Then, these 3 bio-diesel fuels were applied to the on-board experiments and the results were compared with gas oil operation case.
Technical Paper

Vaporization Characteristics and Liquid-Phase Penetration for Multi-Component Fuels

2004-03-08
2004-01-0529
The maximum liquid-phase penetration and vaporization behavior was investigated by using simultaneous measurement for mie-scattered light images and shadowgraph ones. The objective of this study was to analyze effect of variant parameters (injection pressure, ambient gas condition and fuel temperature) and fuel properties on vaporization behavior, and to investigate liquid phase penetration for the single- and multi-component fuels. The experiments were conducted in a constant-volume vessel with optical access. Fuel was injected into the vessel with electronically controlled common rail injector.
X