Refine Your Search

Topic

Author

Search Results

Technical Paper

Polyurethane Foam Inserts for NVH and Structural Applications

2004-03-08
2004-01-0461
The application of two-component polyurethane (PU) foam materials for acoustical and structural performance enhancements in vehicle structures have increased significantly in the past ten years. The benefits include NVH management (through effective cavity sealing), body stiffness improvements and energy management in crash applications. These PU foams can either be pumped into body cavities in the OEM assembly plants (bulk applied) or can be pre-molded into Structural Foam Inserts (SFI) and installed in the body-shop prior to full frame assembly. The choice of application type depends on vehicle-specific requirements and assembly plant criteria. The chemistry, plant application and benefits associated with bulk PU foam has already been cited in previous work.1, 2, 3 This paper showcases BETAFOAM™ SFI technology developed by Dow Automotive that complements traditional bulk foam technology.
Technical Paper

Analytical and Experimental Techniques in Solving the Plastic Intake Manifold NVH

2001-04-30
2001-01-1544
The intent of this paper is to summarize the work of the V8 power plant intake manifold radiated noise study. In a particular V8 engine application, customer satisfaction feedback provided observations of existing unpleasant noise at the driver's ear. A comprehensive analysis of customer data indicated that a range from 500 to 800 Hz suggests a potential improvement in noise reduction at the driver's ear. In this study the noise source was determined using various accelerometers located throughout the valley of the engine and intake manifold. The overall surface velocity of the engine valley was ranked with respect to the overall surface velocity of the intake manifold. An intensity mapping technique was also used to determine the major component noise contribution. In order to validate the experimental findings, a series of analysis was also conducted. The analysis model included not only the plastic intake manifold, but also the whole powertrain.
Technical Paper

Polyurethane Foam Systems For NVH and Improved Crashworthiness

2001-04-30
2001-01-1467
Recently, automotive engineers have been looking at rigid polyurethane foam systems for the advantages their application brings to vehicle design and performance. The benefits range from NVH management achieved through effective body cavity sealing and improved structural dynamics, to enhanced vehicle crashworthiness. These benefits can be realized through application of polyurethane foam systems designed for energy management. These systems offer multifunctional, low cost solutions to traditional approaches and can be modeled early in the vehicle design stage. In many cases, the overall vehicle mass is reduced as reinforcements are eliminated and/or sheet metal thickness is decreased. Dow Automotive has developed a family of water blown polyurethane foams specifically for these applications. Development has focused on foam systems designed for impact optimization, allowing OEM's to optimize the body structure content.
Technical Paper

2002 Pontiac Montana Frequency Improvements Employing Structural Foam

2001-04-30
2001-01-1609
This paper documents a joint development process between General Motors and Dow Automotive to improve primary body structure frequencies on the GM family of midsize vans by utilizing cavity-filling structural foam. Optimum foam locations, foam quantity, and foam density within the body structure were determined by employing both math-based modeling and vehicle hardware testing techniques. Finite element analysis (FEA) simulations of the Body-In-White (BIW) and “trimmed body” were used to predict the global body structure modes and associated resonant frequencies with and without structural foam. The objective of the FEA activity was to quantify frequency improvements to the primary body structure modes of matchboxing, bending, and torsion when using structural foam. Comprehensive hardware testing on the vehicle was also executed to validate the frequency improvements observed in the FEA results.
Technical Paper

New Modified Dow Polyamide Resins Solving Under-the-Hood Warpage Problems

2002-07-09
2002-01-2104
Polyamide resins are well established within the automotive industry and are widely used in a range of demanding under-the-hood applications such as valve covers and air intake manifolds. In reality however, the disadvantages of conventional nylon products, such as excessive warpage and poor dimensional stability to name but two, make it increasingly difficult for engineers to produce the ever more complex parts demanded by new engine developments. In this paper we shall introduce a new range of modified Dow Polyamide resins that greatly reduce the above mentioned disadvantages. In comparisons with commercially available nylon 6 and 66 materials we shall illustrate improved warpage behaviour and lower moisture pick-up in combination with excellent chemical resistance to, for example, hot motor oil and ethylene glycol. In summation, examples will be provided to illustrate the improved utility of these new, modified Dow Polyamide resins.
Technical Paper

High Performance Forged Steel Crankshafts - Cost Reduction Opportunities

1992-02-01
920784
Higher horsepower per liter engines have put more demand on the crankshaft, often requiring the use of forged steel. This paper examines cost reduction opportunities to offset the penalties associated with forged steel, with raw material and machinability being the primary factors evaluated. A cost model for crankshaft processing is utilized in this paper as a design tool to select the lowest cost material grade. This model is supported by fatigue and machinability data for various steel grades. Materials considered are medium carbon, low alloy, and microalloy steels; the effects of sulfur as a machining enhancer is also studied.
Technical Paper

Exterior Body Panels - Present Manufacturing Implementation and Future Directions and Needs

1992-02-01
920372
Advances in computerized solid modeling techniques allow the realistic representation of exterior body panels as solid models, at the concept stage of part design. A flow chart of the process is presented on the use of solid models to create exterior body panels. The flow chart allows a study of the process and is extended to the next generation of capabilities.
Technical Paper

A Comparison of Aluminum, Sheet Molding Compound and Steel for Hoods

1992-02-01
920242
A unique opportunity arose to make a direct comparison of aluminum, sheet molding compound (SMC) and steel using a common hood design. In considering all possible material combinations of inner and outer panels, it was discovered that some of the combinations were incompatible due to material properties. Only the compatible material combinations were considered. Three different joining techniques - welding, bonding and bonded hem flanging - were evaluated. The cost, weight and structural performance of the chosen hood material combinations were established. Areas of further development were identified, including design optimization for specific material combinations.
Technical Paper

Improvements in the Dent Resistance of Steel Body Panels

1992-02-01
920243
A computer-controlled body panel testing machine has been used to quantify stiffness and dent resistance of body panels at Chrysler. The influence of yield strength and local reinforcement on the mechanical behavior of automotive door panels has been investigated. Medium strength steels in the range of 210 -240 MPa yield strength have produced significant improvements in dent resistance over a 160 MPa yield strength steel. Considerable improvements in dent resistance can also be attributed to the use of local, adhesively attached, glass fiber reinforcement patches. The effects of boundary conditions and panel shape on stiffness and dent resistance are illustrated in this application.
Technical Paper

Evaluation of Automotive Front Seat Structure Constructed of Polymer Composite

1992-02-01
920335
Seats play an important role in determining customer satisfaction and safety. They also represent three to five percent of the overall vehicle cost and weight. Therefore, automotive manufacturers are continuously seeking ways to improve the areas of comfort, safety, reliability, cost and weight within the seat system. The purpose of this paper is to review the development of an automotive front seat constructed of injection molded nylon frames and metal mechanisms. This development program was initiated for the purpose of reducing vehicle weight while increasing the reliability and safety of the front seats. This paper will review the material and process selection decision, a design overview, the performance criteria and the results of tests performed on the injection molded front seats.
Technical Paper

Analyzing Vibrations in an IC Engine Valve Train

1998-02-23
980570
This study analyzes the vibration characteristics of the valve train of a 2.0L SOHC Chrysler Corp. Neon engine over a range of operating speeds to investigate and demonstrate the advantages and limitations of various dynamic measurements such as displacement, velocity, and acceleration in this application. The valve train was tested in a motoring fixture at speeds of 500 to 3500 camshaft rpm. The advantages of analyzing both time and frequency domain measurements are described. Both frequency and order analysis were done on the data. The theoretical order spectra of cam displacement and acceleration were computed and compared to the experimental data. Deconvolution was used to uncover characteristic frequencies of vibration in the system. The theoretical cam acceleration spectrum was deconvolved from measured acceleration spectra to reveal the frequency response function of the follower system.
Technical Paper

Identification of Key Vehicle Parameters for Pedestrian Impact Safety

2005-10-23
2005-26-320
Pedestrians forming the most important casualty of road accidents, European countries have brought in new laws for vehicles to be made safer for pedestrian impacts. The needs of pedestrian safety are different from current requirements such as low speed or insurance impacts. To fulfill both traditional vehicle to vehicle and pedestrian safety requirements, design changes are needed to find a good balance. However, design limitations are imposed in order to conserve the styling and aesthetics of the front end, which define the image and often handling/aerodynamics of the car. Thus, numerous boundary conditions, both mechanical and non-mechanical, should be taken into account during the implementation of pedestrian safety solutions. This study breaks out part of vehicle front profile, which can be explicitly given values. These values have been based on 2-D simulations conducted across four vehicle categories available in the Indian scenario.
Technical Paper

Experience in Sand Casting Aluminum MMC Prototype Components

1993-03-01
930179
Typical sand-casting techniques have been shown to be inappropriate in pouring particulate reinforced aluminum metal matrix composite (Al-MMC) castings. New gating/risering configurations were necessary to produce castings of acceptable soundness. Several automotive components, including brake rotors, cylinder liners and camshaft thrust plates, were prepared using special techniques. Initial durability test results of several Al-MMC prototype components are presented.
Technical Paper

RTM Body Panels for Viper Sports Car

1993-03-01
930468
Resin transfer molding (RTM) is the process of choice for the Body Panels of the Viper Sports car. The objective of this paper is to outline the reasons for the choice of RTM, and discuss development of technology for Class A surfaces and the paint system. Accomplishments to date and finally the work yet to be completed will also be defined. Conclusions from the work to date indicate that the RTM process enables a reduction in vehicle development time through faster prototypes and tool build times and that high quality, Class A surfaces can be successfully achieved even with epoxy tools. Additional work is ongoing to reduce cycle times and finishing costs, and to improve the in-process dimensional stability.
Technical Paper

Chrysler 8.0-Liter V-10 Engine

1993-11-01
933033
Chrysler Corporation has developed an 8.0-liter engine for light truck applications. Numerous features combine to produce the highest power and torque ratings of any gasoline-fueled light truck engine currently available while also providing commensurate durability. These features include: a deep-skirt ten-cylinder 90° “V” block, a Helmholtz resonator intake manifold that enhances both low and mid-range torque, light die cast all-aluminum pistons for low vibration, a unique firing order for smooth operation, a “Y” block configuration for strength and durability, a heavy duty truck-type thermostat to control warm up, and a direct ignition system.
Technical Paper

Chrysler 3.5 Liter V-6 Engine

1993-03-01
930875
A new 3.5 liter, 60 degrees V6 engine has been designed specifically for Chrysler's 1993 MY line of mid-size sedans - Dodge Intrepid, Eagle Vision, Chrysler Concorde and New Yorker. This new engine features many new components for enchanced performance. The cylinder head has a single overhead cam, four valve-per - cylinder design. The intake system is a cross-flow design equipped with dual throttle bodies, and the manifold also incorporates a vacuum operated tuning valve that increases the mid-range torque of the engine. A windage tray is used on every engine to reduce drag on the rotating components within the crankcase. Dual knock sensors (one per cylinder bank) are used to take advantage of the aggressive spark advance and high compression ratio. The engine also utilizes a plastic, helical, water pump impeller that contributes to low parasitic power losses. The engine incorporates many components and features to ensure durability.
Technical Paper

New Concept Modular Manual Transmission Clutch and Flywheel Assembly

1992-09-01
922110
Most United States vehicle assembly plants produce significantly more automatic transmission equipped vehicles than manual transmission vehicles. Assembling these two vehicles on a common production line can create complexity problems. This paper describes the design and development of a pre-assembled manual transmission clutch and flywheel modular assembly which reduces most of these problems. This assembly is used on the 1993 model year mini-van with a 2.5L four cylinder engine. This modular clutch system utilizes the same starter ring gear carrier (driveplate) used on automatic transmission equipped vehicles. It pilots into the crankshaft similar to the automatic transmission torque converter. It is balanced as an assembly which results in a lower system imbalance. A significant system piece cost saving, in comparison with today's competitive market, was achieved.
Technical Paper

The Behavior of Multiphase Fuel-Flow in the Intake Port

1994-03-01
940445
Most of the current fuel supply specifications, including the key parameters in the transient fuel control strategies, are experimentally determined since the complexity of multiphase fuel flow behavior inside the intake manifold is still not quantitatively understood. Optimizing these specifications, especially the parameters in transient fueling systems, is a key issue in improving fuel efficiency and reducing exhaust emissions. In this paper, a model of fuel spray, wall-film flow and wall-film vaporization has been developed to gain a better understanding of the multiphase fuel-flow behavior within the intake manifold which may help to determine the fuel supply specifications in a multi-point injection system.
Technical Paper

Validation of Computational Vehicle Windshield De-Icing Process

1994-03-01
940600
This study is a joint development project between Chrysler Corporation and CFD Research Corporation. The objective of this investigation was to develop a 3D computational flow and heat transfer model for a vehicle windshield de-icing process. The windshield clearing process is a 3D transient, multi-medium, multi-phase heat exchange phenomenon in connection with the air flow distribution in the passenger compartment. The transient windshield de-icing analysis employed conjugate heat transfer methodology and enthalpy method to simulate the velocity distribution near the windshield inside surface, and the time progression of ice-melting pattern on the windshield outside surface. The comparison between the computed results and measured data showed very reasonable agreement, which demonstrated that the developed analysis tool is capable of simulating the vehicle cold room de-icing tests.
Technical Paper

In-Situ Phase-Shift Measurement of the Time-Resolved UBHC Emissions

1995-02-01
950161
The UBHC emissions during cold starting need to be controlled in order to meet the future stringent standards. This requires a better understanding of the characteristics of the time resolved UBHC signal measured by a high frequency FID and its phasing with respect to the valve events. The computer program supplied with the instrument and currently used to compute the phase shift has many uncertainties due to the unsteady nature of engine operation during starting. A new technique is developed to measure the in-situ phase shift of the UBHC signal under the transient thermodynamic and dynamic conditions of the engine. The UBHC concentration is measured at two locations in the exhaust manifold of one cylinder in a multicylinder port injected gasoline engine. The two locations are 77 mm apart. The downstream probe is positioned opposite to a solenoid-operated injector which delivers a gaseous jet of hydrocarbon-free nitrogen upon command.
X