Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Fast Simulation of Wave Action in Engine Air Path Systems Using Model Order Reduction

2016-04-05
2016-01-0572
Engine downsizing, boosting, direct injection and variable valve actuation, have become industry standards for reducing CO2 emissions in current production vehicles. Because of the increasing complexity of the engine air path system and the high number of degrees of freedom for engine charge management, the design of air path control algorithms has become a difficult and time consuming process. One possibility to reduce the control development time is offered by Software-in-the-Loop (SIL) or Hardware-in-the-Loop (HIL) simulation methods. However, it is significantly challenging to identify engine air path system simulation models that offer the right balance between fidelity, mathematical complexity and computational burden for SIL or HIL implementation.
Technical Paper

Engine-in-the-Loop Study of a Hierarchical Predictive Online Controller for Connected and Automated Heavy-Duty Vehicles

2020-04-14
2020-01-0592
This paper presents a cohesive set of engine-in-the-loop (EIL) studies examining the use of hierarchical model-predictive control for fuel consumption minimization in a class-8 heavy-duty truck intended to be equipped with Level-1 connectivity/automation. This work is motivated by the potential of connected/automated vehicle technologies to reduce fuel consumption in both urban/suburban and highway scenarios. The authors begin by presenting a hierarchical model-predictive control scheme that optimizes multiple chassis and powertrain functionalities for fuel consumption. These functionalities include: vehicle routing, arrival/departure at signalized intersections, speed trajectory optimization, platooning, predictive optimal gear shifting, and engine demand torque shaping. The primary optimization goal is to minimize fuel consumption, but the hierarchical controller explicitly accounts for other key objectives/constraints, including operator comfort and safe inter-vehicle spacing.
Journal Article

Predicting Lead Vehicle Velocity for Eco-Driving in the Absence of V2V Information

2023-04-11
2023-01-0220
Accurately predicting the future behavior of the surrounding traffic, especially the velocity of the lead vehicle is important for optimizing the energy consumption and improve the safety of Connected and Automated Vehicles (CAVs). Several studies report methods to predict short-to-mid-length lead vehicle velocity using stochastic models or other data-driven techniques, which require availability of extensive data and/or Vehicle-to-Vehicle (V2V) communication. In the absence of connectivity, or in data-restricted cases, the prediction must rely only on the measured position and relative velocity of the lead vehicle at the current time. This paper proposes two velocity predictors to predict short-to-mid-length lead vehicle velocity. The first predictor is based on a Constant Acceleration (CA) with an augmented stop mode. The second one is based on a modified Enhanced Driver Model (EDM-LOS) with line-of-sight feature.
Journal Article

Model-Based Wheel Torque and Backlash Estimation for Drivability Control

2017-03-28
2017-01-1111
To improve torque management algorithms for drivability, the powertrain controller must be able to compensate for the nonlinear dynamics of the driveline. In particular, the presence of backlash in the transmission and drive shafts excites sharp torque fluctuations during tip-in or tip-out transients, leading to a deterioration of the vehicle drivability and NVH. This paper proposes a model-based estimator that predicts the wheel torque in an automotive drivetrain, accounting for the effects of backlash and drive shaft flexibility. The starting point of this work is a control-oriented model of the transmission and vehicle drivetrain dynamics that predicts the wheel torque during tip-in and tip-out transients at fixed gear. The estimator is based upon a switching structure that combines a Kalman Filter and an open-loop prediction based on the developed model.
X