Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Integrated CO2 and Humidity Control by Membrane Gas Absorption

1997-07-14
972560
In a harmonized ESA/NIVR project the performance of membrane gas absorption for the simultaneous removal of carbon dioxide and moisture has been determined experimentally at carbon dioxide and humidity concentration levels representative for spacecraft conditions. Performance data at several experimental conditions have been collected. Removal of moisture can be controlled by the temperature of the absorption liquid. Removal of carbon dioxide is slightly affected by the temperature of the absorption liquid. Based on these measurements a conceptual design for a carbon dioxide and humidity control system for the Crew Transport Vehicle (CTV) is made. For the regeneration step in this design a number of assumptions have been made. The multifunctionality of membrane gas absorption makes it possible to combine a number of functions in one compact system.
Technical Paper

Results of Breadboard Tests Withan Integrated CO2, Humidity and Thermal Control System

2003-07-07
2003-01-2348
Membrane gas absorption and desorption (MGA/MGD) for the removal of CO2 in manned spacecraft or other enclosed environment is subject of study by Stork and TNO for many years. The system is based on the combination of membrane separation and gas absorption. Advantage of this technology is that the system not only can be used to remove the carbon dioxide but also to control the relative humidity and temperature. Absorption of moisture and heat is achieved by cooling the absorption liquid below the dewpoint temperature of the gas stream. From the start in 1995, the Crew Transfer Vehicle is used as a basis for the design (1,2). Compared to the planned air conditioning system, consisting of a condensing heat exchanger, LiOH cartridges and a water evaporator assembly, MGA/MGD shows advantage in volume, mass and power consumption. The absorption liquid circulates through the spacecraft thermal control loop, replacing the coolant water.
Technical Paper

An Experimental Model of a Biological Life Support System with the Intra-system Mass Exchange Closed to a High Degree, Based on “Biological Combustion” of Dead-end Plant Residues

2003-07-07
2003-01-2417
This work concerns the model of a biological life support system consisting of higher plants, a unit of “biological combustion”, a physicochemical reactor, and 1/30 of a human. The cycling of the main biogenic elements of the system, water, and carbon dioxide was closed to a high degree (more than 95%). Experimental-theoretical analysis of the cycling processes in the system was based on the calculations of mass exchange rates dynamics and some stoichiometric equations. The model was designed for the study of mechanisms of material transformation and the directions of mass exchange processes in the artificial ecosystems.
Technical Paper

Phases Management for Advanced Life Support Processes

2005-07-11
2005-01-2767
For a planetary base, a reliable life support system including food and water supply, gas generation and waste management is a condition sine qua non. While for a short-term period the life support system may be an open loop, i.e. water, gases and food provided from the Earth, for long-term missions the system has to become more and more regenerative. Advanced life support systems with biological regenerative processes have been studied for many years and the processes within the different compartments are rather complete and known to a certain extent. The knowledge of the associated interfaces, the management of the input and output phases: liquid, solid, gas, between compartments, has been limited. Nowadays, it is well accepted that the management of these phases induces generic problems like capture, separation, transfer, mixing, and buffering. A first ESA study on these subjects started mid 2003.
Technical Paper

Integrated CO2, Humidity and Thermal Control by Membrane Gas Absorption

2000-07-10
2000-01-2353
Membrane gas absorption for the control of CO2 in manned spacecrafts is studied by Stork and TNO. Membrane Gas Absorption (MGA) is based on the combination of membrane separation and gas absorption. The cabin air of a spacecraft is fed along one side of a hydrophobic membrane. The air diffuses through the membrane and the CO2 is selectively absorbed by an absorption liquid. Experiments showed that the MGA system can not only be used for the removal of the carbon dioxide but also can be applied to control the relative humidity and temperature of the cabin atmosphere. Absorption of moisture and heat is achieved by cooling the absorption liquid below the dewpoint temperature of the gas stream. This paper deals with the design aspects of a MGA system for combined CO2, humidity and thermal control aboard the Crew Transfer Vehicle. Furthermore, design data are presented for a similar system aboard the International Space Station.
X