Refine Your Search

Topic

Author

Search Results

Journal Article

Design of a Multi-Chamber Silencer for Turbocharger Noise

2009-05-19
2009-01-2048
A multi-chamber silencer is designed by a computational approach to suppress the turbocharger whoosh noise downstream of a compressor in an engine intake system. Due to the significant levels and the broadband nature of the source spanning over 1.5 – 3.5 kHz, three Helmholtz resonators are implemented in series. Each resonator consists of a chamber and a number of slots, which can be modeled as a cavity and neck, respectively. Their target resonance frequencies are tuned using Boundary Element Method to achieve an effective noise reduction over the entire frequency range of interest. The predicted transmission loss of the silencer is then compared with the experimental results from a prototype in an impedance tube setup. In view of the presence of rapid grazing flow, these silencers may be susceptible to whistle-noise generation. Hence, the prototype is also examined on a flow bench at varying flow rates to assess such flow-acoustic coupling.
Journal Article

Analysis of Speed-Dependent Vibration Amplification in a Nonlinear Driveline System Using Hilbert Transform

2013-05-13
2013-01-1894
The engine start-up process introduces speed-dependent transient vibration problems in ground vehicle drivelines as the torsional system passes through the critical speeds during the acceleration process. Accordingly, a numerical study is proposed to gain more insights about this transient vibration issue, and the focus is on nonlinear analysis. First, a new nonlinear model of a multi-staged clutch damper is developed and validated by a transient experiment. Second, a simplified nonlinear torsional oscillator model with the multi-staged clutch damper, representing the low frequency dynamics of a typical vehicle driveline, is developed. The flywheel velocity measured during the typical engine start-up process is utilized as an excitation. The envelope function of the speed-dependent response amplification is estimated via the Hilbert transform technique. Finally, the envelope function is effectively utilized to examine the effect of multi-staged clutch damper properties.
Journal Article

Instabilities at the Low-Flow Range of a Turbocharger Compressor

2013-05-13
2013-01-1886
The acoustic and performance characteristics of an automotive centrifugal compressor are studied on a steady-flow turbocharger test bench, with the goal of advancing the current understanding of compression system instabilities at the low-flow range. Two different ducting configurations were utilized downstream of the compressor, one with a well-defined plenum (large volume) and the other with minimized (small) volume of compressed air. The present study measured time-resolved oscillations of in-duct and external pressure, along with rotational speed. An orifice flow meter was incorporated to obtain time-averaged mass flow rate. In addition, fast-response thermocouples captured temperature fluctuations in the compressor inlet and exit ducts along with a location near the inducer tips.
Journal Article

A Primer on Building a Hardware in the Loop Simulation and Validation for a 6X4 Tractor Trailer Model

2014-04-01
2014-01-0118
This research was to model a 6×4 tractor-trailer rig using TruckSim and simulate severe braking maneuvers with hardware in the loop and software in the loop simulations. For the hardware in the loop simulation (HIL), the tractor model was integrated with a 4s4m anti-lock braking system (ABS) and straight line braking tests were conducted. In developing the model, over 100 vehicle parameters were acquired from a real production tractor and entered into TruckSim. For the HIL simulation, the hardware consisted of a 4s4m ABS braking system with six brake chambers, four modulators, a treadle and an electronic control unit (ECU). A dSPACE simulator was used as the “interface” between the TruckSim computer model and the hardware.
Journal Article

Tuned Silencer Using Adaptive Variable Volume Resonator

2008-04-14
2008-01-0896
In this study, an adaptive control mechanism is proposed to design a silencer applying variable volume resonator concept. Transfer matrix method is used to calculate the transmission loss and evaluate acoustic performance of the proposed mechanism. Effects of damping factor, area ratio of expansion chambers are examined first for a fixed double chamber resonator. Then a two-dimensional search scheme is developed to find optimal piston position that achieves maximum transmission loss with minimal effort. This study shows that the proposed adaptive silencer can efficiently attenuate noise when comparing with a conventional fixed resonator.
Journal Article

Valve Guide for High Temperature Applications

2008-04-14
2008-01-1110
Sintered valve guides are increasingly used in various engine applications due to their superior durability and cost. Typical valve guide materials are low alloyed materials of the type Fe-Cu-C. More severe applications may require higher alloying content. One such application is EGR where the exhaust temperatures are much higher as compared to the conventional automotive valve guide. A new material was developed to work in this harsh environment. The object of this paper is to report development of this material including material properties and durability test results.
Journal Article

Validation of Real Time Hardware in the Loop Simulation for ESC Testing with a 6×4 Tractor and Trailer Models

2013-04-08
2013-01-0692
The tractor trailer models discussed in this paper were for a real-time hardware-in-the-loop (HIL) simulation to test heavy truck electronic stability control (ESC) systems [1]. The accuracy of the simulation results relies on the fidelity and accuracy of the vehicle parameters used. However in this case where hardware components are part of the simulation, their accuracy also affects the proper working of the simulation and ESC unit. Hence both the software and hardware components have to be validated. The validation process discussed in this paper is divided into two sections. The first section deals with the validation of the TruckSim vehicle model, where experimental data is compared with simulation results from TruckSim. Once the vehicle models are validated, they are incorporated in the HIL simulation and the second section discusses the validation of the whole HIL system with ESC.
Journal Article

Comparison of Heavy Truck Engine Control Unit Hard Stop Data with Higher-Resolution On-Vehicle Data

2009-04-20
2009-01-0879
Engine control units (ECUs) on heavy trucks have been capable of storing “last stop” or “hard stop” data for some years. These data provide useful information to accident reconstruction personnel. In past studies, these data have been analyzed and compared to higher-resolution on-vehicle data for several heavy trucks and several makes of passenger cars. Previous published studies have been quite helpful in understanding the limitations and/or anomalies associated with these data. This study was designed and executed to add to the technical understanding of heavy truck event data recorders (EDR), specifically data associated with a modern Cummins power plant ECU. Emergency “full-treadle” stops were performed at many combinations of load-speed-surface coefficient conditions. In addition, brake-in-curve tests were performed on wet Jennite for various conditions of disablement of the braking system.
Journal Article

Vehicle Coast Analysis: Typical SUV Characteristics

2008-04-14
2008-01-0598
Typical factors that contribute to the coast down characteristics of a vehicle include aerodynamic drag, gravitational forces due to slope, pumping losses within the engine, frictional losses throughout the powertrain, and tire rolling resistance. When summed together, these reactions yield predictable deceleration values that can be related to vehicle speeds. This paper focuses on vehicle decelerations while coasting with a typical medium-sized SUV. Drag factors can be classified into two categories: (1) those that are caused by environmental factors (wind and slope) and (2) those that are caused by the vehicle (powertrain losses, rolling resistance, and drag into stationary air). The purpose of this paper is to provide data that will help engineers understand and model vehicle response after loss of engine power.
Technical Paper

Gear Design for Low Whine Noise in a Supercharger Application

2007-05-15
2007-01-2293
Supercharger gear whine noise has been a NVH concern for many years, especially around idle rpm. The engine masking noise is very low at idle and the supercharger is sensitive to transmitted gear whine noise from the timing gears. The low loads and desire to use spur gears for ease in timing the rotors have caused the need to make very accurate profiles for minimizing gear whine noise. Over the past several years there has been an effort to better understand gear whine noise source and transmission path. Based on understanding the shaft bending mode frequencies and better gear design optimization tools, the gear design was modified to increase the number of teeth in order to move out of the frequency range of the shaft bending modes at idle speed and to lower the transmission error of the gear design through optimization using the RMC (Run Many Cases) software from the OSU gear laboratory.
Technical Paper

Transient Clunk Response of a Driveline System: Laboratory Experiment and Analytical Studies

2007-05-15
2007-01-2233
A laboratory experiment is designed to examine the clunk phenomenon. A static torque is applied to a driveline system via the mass of an overhanging torsion bar and electromagnet. Then an applied load may be varied via attached mass and released to simulate the step down (tip-out) response of the system. Shaft torques and torsional and translational accelerations are recorded at pre-defined locations. The static torque closes up the driveline clearances in the pinion/ring (crown wheel) mesh. With release of the applied load the driveline undergoes transient vibration. Further, the ratio of preload to static load is adjusted to lead to either no-impact or impact events. Test A provides a ‘linear’ result where the contact stiffness does not pass into clearance. This test is used for confirming transient response and studying friction and damping. Test B is for mass release with sufficient applied torque to pass into clearance, allowing the study of the clunk.
Technical Paper

Dynamic Modeling and Characterization of Transmission Response for Controller Design

1998-02-23
981094
Electronic closed loop control of automatic transmission functions can potentially benefit from the use of quantitative models of transmission response in a form compatible with controller design procedures. Transmission dynamic response during gear shifts of a discrete-ratio transmission is nonlinear. Procedures for developing linearized dynamic models are applied to the simulation of the nonlinear model of a representative power train during the inertia phase of a shift. The frequency responses for the resulting linear models are examined, and their implications for controller design are noted.
Technical Paper

Refinements of a Heavy Truck ABS Model

2007-04-16
2007-01-0839
In 2004, a model of a 6s6m ABS controller was developed in order to support NHTSA's efforts in the study of heavy truck braking performance. This model was developed using Simulink and interfaced with TruckSim, a vehicle dynamics software package, in order to create an accurate braking simulation of a 6×4 Peterbilt straight truck. For this study, the vehicle model braking dynamics were improved and the ABS controller model was refined. Also, the controller was made adaptable to ABS configurations other than 6s6m, such as 4s4m and 4s3m. Controller models were finally validated to experimental data from the Peterbilt truck, gathered at NHTSA's Vehicle Research and Test Center (VRTC).
Technical Paper

Development and Implementation of a Path-Following Algorithm for an Autonomous Vehicle

2007-04-16
2007-01-0815
This paper describes the development and implementation of an accurate and repeatable path-following algorithm focused ultimately on vehicle testing. A compact, lightweight, and portable hardware package allows easy installation and negligible impact on the vehicle mass, even for the smallest automobile. Innovative features include the ability to generate a smooth, evenly-spaced path vector regardless the quality of the given path. The algorithm proposed in this work is suitable for testing in a controlled environment. The system was evaluated in simulation and performed well in road tests at low speeds.
Technical Paper

Design and Conduct of Precision Planetary Gear Vibration Experiments

2009-05-19
2009-01-2071
Despite a large body of analytical work characterizing the dynamic motion of planetary gears, supporting experimental data is limited. Experimental results are needed to support computer modeling and offer practical optimization guidelines to gear designers. This paper presents the design and implementation of a test facility and precision test fixtures for accurate measurement of planetary gear vibration at operating conditions. Acceleration measurements are made on all planetary bodies under controlled torque/speed conditions. Custom, high-precision test fixtures accommodate instrumentation, ensure accurate alignment, help isolate gear dynamics, and allow for variability in future testing. Results are compared with finite element and lumped parameter models.
Technical Paper

Global Cooperation and Innovation: a case study about the development of the world's first application of an electronic locker differential integrated to a front transversal transmission

2008-10-07
2008-36-0195
This article aims to show how the development of innovative products within the automotive industry in Brazil has been oriented, linking technological competences construction in local poles with suppliers and headquarters cooperation. The discussion in this article is illustrated by the development and application analysis of an electronic locker differential integrated to a front transversal transmission, which is the world's first commercial application. It proposes, through a case study, a relationship between the subjects discussed in here and the new tendencies for product development within the automotive industry and also for the world's R&D flow.
Technical Paper

On-board Measurements of City Buses with Hybrid Electric Powertrain, Conventional Diesel and LPG Engines

2009-11-02
2009-01-2719
On-board measurements of fuel consumption and vehicle exhaust emissions of NOx, HC, CO, CO2, and PM are being conducted for three types of commercially available city buses in Guangzhou, China. The selected vehicles for this test include a diesel bus with Eaton hybrid electric powertrain, a conventional diesel bus with automated mechanical transmission (AMT), and a LPG powered city bus with manual transmission (MT). All of the tested vehicles were instrumented with on-board measurements. Horiba OBS-2200 was used for measuring NOx, HC, and CO emissions; ELPI (Electrical Low Pressure Impactor) was used for PM measurement. The vehicles were tested at Hainan National Proving Ground in southern China. Test data of fuel consumption and exhaust emissions were analyzed. The city bus with Eaton hybrid electric powertrain demonstrated more than 27% fuel consumption reduction over the conventional diesel powered bus, and over 68% over the LPG bus.
Technical Paper

Preliminary Numerical Analysis of Valve Fatigue in a Checkball Pump for Driveline Applications

2010-10-05
2010-01-2008
Recent studies have shown that hydraulic hybrid drivelines can significantly improve fuel savings for medium weight vehicles on stop-start drive cycles. In a series hydraulic hybrid (SHH) architecture, the conventional mechanical driveline is replaced with a hydraulic driveline that decouples vehicle speed from engine speed. In an effort to increase the design space, this paper explores the use of a fixed displacement checkball piston pump in an SHH driveline. This paper identifies the potential life-limiting components of a fixed displacement checkball piston pump and examines the likelihood of surface fatigue in the check valves themselves. Numerical analysis in ABAQUS software suggests that under worst case operating conditions, cyclic pressure loading will result in low-cycle plastic deformation of check valve surfaces.
Technical Paper

Dynamic Simulation of Nonlinear Model-Based Observer for Hydrodynamic Torque Converter System

2004-03-08
2004-01-1228
It is well-known that the hydrodynamic torque converter plays a major role in the transient study of power train systems since it has a great influence on the transient characteristics of a vehicle during gear shifting as well as vehicle launching. To predict accurately the vehicle characteristics, detailed analysis of the hydrodynamic torque converter is required. However, even with the development of a nonlinear dynamic model for the torque converter based on Hrovat and Tobler's paper (1985) is available, it is imperative to calculate both torques from impeller and turbine in order to utilize the dynamic model since it takes torque as an input [3]. In order to obtain the information about necessary but unmeasurable variables, nonlinear model-based estimator is developed using already available and measurable speeds data of impeller and turbine. The hydrodynamic torque converter model includes all necessary dynamics, namely, hydraulic as well as mechanical dynamics.
Technical Paper

Closed Loop Steering System Model for the National Advanced Driving Simulator

2004-03-08
2004-01-1072
This paper presents the details of the model for the physical steering system used on the National Advanced Driving Simulator. The system is basically a hardware-in-the-loop (steering feedback motor and controls) steering system coupled with the core vehicle dynamics of the simulator. The system's torque control uses cascaded position and velocity feedback and is controlled to provide steering feedback with variable stiffness and dynamic properties. The reference model, which calculates the desired value of the torque, is made of power steering torque, damping function torque, torque from tires, locking limit torque, and driver input torque. The model also provides a unique steering dead-band function that is important for on-center feel. A Simulink model of the hardware/software is presented and analysis of the simulator steering system is provided.
X