Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Effects of Real-Fluid Thermodynamics on High-Pressure Fuel Injection Processes

2014-04-01
2014-01-1429
This paper first summarizes a new theoretical description that quantifies the effects of real-fluid thermodynamics on liquid fuel injection processes as a function of pressure at typical engine operating conditions. It then focuses on the implications this has on modeling such flows with emphasis on application of the Large Eddy Simulation (LES) technique. The theory explains and quantifies the major differences that occur in the jet dynamics compared to that described by classical spray theory in a manner consistent with experimental observations. In particular, the classical view of spray atomization as an appropriate model at some engine operating conditions is questionable. Instead, non-ideal real-fluid behavior must be taken into account using a multicomponent formulation that applies to hydrocarbon mixtures at high-pressure supercritical conditions.
Technical Paper

Large Eddy Simulation of a Transient Air Jet with Emphasis on Entrainment during Deceleration

2010-04-12
2010-01-1133
Recent experiments of diesel injection processes have demonstrated that mixing accelerates after the end of injection (EOI). This finding has significant implications for low-temperature combustion (LTC) diesel engines. Previous simulations using a one-dimensional model of a single-pulsed air jet, which is analogous in many aspects to diesel jets, suggest that the rapid mixing after EOI in diesel jets is due to a temporary increase in the entrainment rate as the jet decelerates. In the present study, we performed a high-fidelity large eddy simulation (LES) of an unsteady air jet identical to that used for the one-dimensional model. The LES calculation agrees well with available experimental data and provides both spatially and temporally resolved details of the three-dimensional transient mixing field. Results show that entrainment increases during deceleration.
X