Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Unregulated Emissions Characterization and Comparison for Two Off-Road Applications: A DPF and Non-DPF Engine

2022-03-29
2022-01-0587
As governmental agencies focus on low levels of the oxides of nitrogen (NOx) emissions compliance, new off-road applications are being reviewed for both regulated and unregulated emissions to understand the technological challenges and requirements for improved emissions performance. The California Air Resources Board (CARB) has declared its intention to pursue more stringent NOX standards for the off-road market. As part of this effort, CARB initiated a program to provide a detailed characterization of emissions meeting the current Tier 4 off-road standards [1]. This work focused on understanding the off-road market, establishing a current technology emissions baseline, and performing initial modeling on potential low NOx solutions. This paper discusses a part of this effort, focuses on the emissions characterization from two non-road engine platforms, and compares the emissions species from different approaches designed to meet Tier 4 emissions regulations.
Technical Paper

Detailed Emissions Characterization for Off-Road Applications: A DPF and non-DPF Engine Comparison

2022-03-29
2022-01-0585
As agencies continue to focus on emissions compliance, low NOX discussions have started to propagate beyond the on-highway market. Nonroad applications, which contribute to 29% of the PM emissions and 11% of the NOX emissions in California, are being reviewed to understand the technological challenges and requirements for improved emissions performance. To help facilitate a nonroad low NOX technology demonstration, information from current engine and aftertreatment technologies required a detailed assessment. The following work will discuss the emissions characterization results from two non-road engine platforms. The intention of this study was to compare the emissions species from different approaches designed to meet Tier 4 emissions regulations. The platforms reflect available technology for DPF and non-DPF aftertreatment architectures.
Journal Article

Achieving Ultra Low NOX Emissions Levels with a 2017 Heavy-Duty On-Highway TC Diesel Engine and an Advanced Technology Emissions System - NOX Management Strategies

2017-03-28
2017-01-0958
Recent 2010 emissions standards for heavy-duty engines have established a limit of oxides of nitrogen (NOX) emissions of 0.20 g/bhp-hr. However, CARB has projected that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards, the National Ambient Air Quality Standards (NAAQS) requirement for ambient particulate matter and Ozone will not be achieved without further reduction in NOX emissions. The California Air Resources Board (ARB) funded a research program to explore the feasibility of achieving 0.02 g/bhp-hr NOX emissions. This paper details engine and aftertreatment NOX management requirements and model based control considerations for achieving Ultra-Low NOX (ULN) levels with a heavy-duty diesel engine. Data are presented for several Advanced Technology aftertreatment solutions and the integration of these solutions with the engine calibration.
Technical Paper

Evaluating the Impact of Connected Vehicle Technology on Heavy-Duty Vehicle Emissions

2023-04-11
2023-01-0716
Eco-driving algorithms enabled by Vehicle to Everything (V2X) communications in Connected and Automated Vehicles (CAVs) can improve fuel economy by generating an energy-efficient velocity trajectory for vehicles to follow in real time. Southwest Research Institute (SwRI) demonstrated a 7% reduction in energy consumption for fully loaded class 8 trucks using SwRI’s eco-driving algorithms. However, the impact of these schemes on vehicle emissions is not well understood. This paper details the effort of using data from SwRI’s on-road vehicle tests to measure and evaluate how eco-driving could impact emissions. Two engine and aftertreatment configurations were evaluated: a production system that meets current NOX standards and a system with advanced aftertreatment and engine technologies designed to meet low NOX 2031+ emissions standards.
Technical Paper

Detailed Characterization of Particle Emissions from Advanced Internal Combustion Engines

2021-04-06
2021-01-0620
Detailed characterization of particle emissions from three different engine technologies were performed, two of which were advanced technology engines. One of the engines was a nonroad Tier 4 Final emission regulation compliant 6.8L John Deere PSS 6068 diesel engine operated with its production calibration strategy. The other two engine platforms were advanced engine technologies whose controllers were developed by Southwest Research Institute (SwRI). These included a dual fuel Navistar MaxxForce 13L natural gas-diesel engine and a Cummins ISX 15L diesel engine. The dual fuel engine was operated in two distinct modes, conventional dual fuel (CDF) mode and low temperature reactivity controlled compression ignition (RCCI) mode. The Cummins ISX engine was operated using a “hot” or low EGR combustion strategy. For each engine technology, the test campaign involved steady-state test modes ranging from low speed low load to high speed high load conditions.
Journal Article

Technology Levers for Meeting 2027 NOx and CO2 Regulations

2023-04-11
2023-01-0354
Commercial vehicles require fast aftertreatment heat-up to move the SCR catalyst into the most efficient temperature range to meet upcoming NOX regulations while minimizing CO2. The focus of this paper is to identify the technology levers when used independently and also together for the purpose of NOX and CO2 reduction toward achieving 2027 emissions levels while remaining CO2 neutral or better. A series of independent levers including cylinder deactivation, LO-SCR, electric aftertreatment heating and fuel burner technologies were explored. All fell short for meeting the 2027 CARB transient emission targets when used independently. However, the combinations of two of these levers were shown to approach the goal of transient emissions with one configuration meeting the requirement. Finally, the combination of three independent levers were shown to achieve 40% margin for meeting 2027 transient NOx emissions while remaining CO2 neutral.
Technical Paper

Further Advances in Demonstration of a Heavy-Duty Low NOX System for 2027 and Beyond

2024-04-09
2024-01-2129
Multiple areas in the U.S. continue to struggle with achieving National Ambient Air Quality Standards for ozone. These continued issues highlight the need for further reductions in NOX emission standards in multiple industry sectors, with heavy-duty on-highway engines being one of the most important areas to be addressed. Starting in 2014, CARB initiated a series of technical demonstration programs aimed at examining the feasibility of achieving up to a 90% reduction in tailpipe NOX, while at the same time maintaining a path towards GHG reductions that will be required as part of the Heavy-Duty Phase 2 GHG program. These programs culminated in the Stage 3 Low NOX program, which demonstrated low NOX emissions while maintaining GHG emissions at levels comparable to the baseline engine.
X