Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

The Effect of Heavy-Duty Diesel Cylinder Deactivation on Exhaust Temperature, Fuel Consumption, and Turbocharger Performance up to 3 bar BMEP

2020-04-14
2020-01-1407
Diesel Cylinder Deactivation (CDA) has been shown in previous work to increase exhaust temperatures, improve fuel efficiency, and reduce engine-out NOx for engine loads up to 3 bar BMEP. The purpose of this study is to determine whether or not the turbocharger needs to be altered when implementing CDA on a diesel engine. This study investigates the effect of CDA on exhaust temperature, fuel efficiency, and turbocharger performance in a 15L heavy-duty diesel engine under low-load (0-3 bar BMEP) steady-state operating conditions. Two calibration strategies were evaluated. First, a “stay-hot” thermal management strategy in which CDA was used to increase exhaust temperature and reduce fuel consumption. Next, a “get-hot” strategy where CDA and elevated idle speed was used to increase exhaust temperature and exhaust enthalpy for rapid aftertreatment warm-up.
Technical Paper

Reduced Piston Oil Cooling for Improved Heavy-Duty Vehicle Fuel Economy

2021-04-06
2021-01-0387
Increased electrification of future heavy-duty engines and vehicles can enable many new technologies to improve efficiency. Electrified oil pumps are one such technology that provides the ability to reduce or turn off the piston oil cooling jets and simultaneously reduce the oil pump flow to account for the reduced flow rate required. This can reduce parasitic losses and improve overall engine efficiency. In order to study the potential impact of reduced oil cooling, a GT-Power engine model prediction of piston temperature was calibrated based on measured piston temperatures from a wireless telemetry system. A simulation was run in which the piston oil cooling was controlled to target a safe piston surface temperature and the resulting reduction in oil cooling was determined. With reduced oil cooling, engine BSFC improved by 0.2-0.8% compared to the baseline with full oil cooling, due to reduced heat transfer from the elevated piston temperatures.
Technical Paper

Investigation of Gasoline Compression Ignition (GCI) Combustion in a High Compression-Ratio Heavy-duty Single-Cylinder Diesel Engine

2021-04-06
2021-01-0495
In this study, a high-efficiency heavy-duty diesel engine platform was used to evaluate gasoline compression ignition (GCI) operation. The experiment was carried out using a single-cylinder engine (SCE) of a high compression ratio (22:1). Pump-grade gasoline fuel 87 research octane number (RON) was used throughout engine testing. Injection strategy was established including double and triple injection schemes to optimize both engine efficiency and emissions. Both low-temperature heat release (LTHR) and high-temperature heat release (HTHR) were seen from a two-stage combustion event resulting from the interaction of pilot and main injections. At low load conditions, besides fuel stratification level by pilot/main injection strategy, higher in-cylinder pressure can greatly improve the ignition of 1st stage combustion. As engine load increases, spray-wall interaction becomes more critical on engine efficiency and emissions performance.
Journal Article

FSI - MRF Coupling Approach For Faster Turbocharger 3D Simulation

2019-01-15
2019-01-0007
Fluid-Structure Interaction (FSI) simulation approach can be used to simulate a turbocharger. However, this predictive 3D simulation encounters the challenge of a long computational time. The impeller speed can be above 100,000 rpm, and generally a CFD solver limits the maximum movement of the impeller surface per time step. The maximum movement must be a fraction (~0.3) of the cell length, thus the time step will be very small. A Multiple Reference Frame (MRF) approach can reduce computational time by eliminating the need to regenerate the mesh at each time-step to accommodate the moving geometry. A static local reference zone encompassing the impeller is created and the impact of the impeller movement is modeled via a momentum source. However, the MRF approach is not a predictive simulation because the impeller speed must be given by the User. A new simulation approach was introduced that coupled the FSI and MRF approach.
X