Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Journal Article

Diesel Cold-Start Emission Control Research for 2015-2025 LEV III Emissions - Part 2

2014-04-01
2014-01-1552
The diesel engine can be an effective solution to meet future greenhouse gas and fuel economy standards, especially for larger segment vehicles. However, a key challenge facing the diesel is the upcoming LEV III and Tier 3 emission standards which will require significant reductions in hydrocarbon (HC) and oxides of nitrogen (NOx) emissions. The challenge stems from the fact that diesel exhaust temperatures are much lower than gasoline engines, so the time required to achieve effective emissions control after a cold-start with typical aftertreatment devices is considerably longer. To address this challenge, a novel diesel cold-start emission control strategy was investigated on a 2L class diesel engine. This strategy combines several technologies to reduce tailpipe HC and NOx emissions before the start of the second hill of the FTP75. The technologies include both engine tuning and aftertreatment changes.
Journal Article

The Effect of EGR on Low-Speed Pre-Ignition in Boosted SI Engines

2011-04-12
2011-01-0339
The spark ignition (SI) engine has been known to exhibit several different abnormal combustion phenomena, such as knock or pre-ignition, which have been addressed with improved engine design or control schemes. However, in highly boosted SI engines - where the engine displacement is reduced and turbocharging is employed to increase specific power - a new combustion phenomenon, described as Low-Speed Pre-Ignition (LSPI), has been exhibited. LSPI is characterized as a pre-ignition event typically followed by heavy knock, which has the potential to cause degradation of the engine. However, because LSPI events occur only sporadically and in an uncontrolled fashion, it is difficult to identify the causes for this phenomenon and to develop solutions to suppress it. Some countermeasures exist that OEMs can use to avoid LSPI, such as load limiting, but these have drawbacks.
Journal Article

Engine Operating Condition and Gasoline Fuel Composition Effects on Low-Speed Pre-Ignition in High-Performance Spark Ignited Gasoline Engines

2011-04-12
2011-01-0342
Downsizing is an important concept to reduce fuel consumption as well as emissions of spark ignition engines. Engine displacement is reduced in order to shift operating points from lower part load into regions of the operating map with higher efficiency and thus lower specific fuel consumption [ 1 ]. Since maximum power in full load operation decreases due to the reduction of displacement, engines are boosted (turbocharging or supercharging), which leads to a higher specific loading of the engines. Hence, a new combustion phenomenon has been observed at high loads and low engine speed and is referred to as Low-Speed Pre-Ignition or LSPI. In cycles with LSPI, the air/fuel mixture is ignited prior to the spark which results in the initial flame propagation quickly transforming into heavy engine knock. Very high pressure rise rates and peak cylinder pressures could exceed design pressure limits, which in turn could lead to degradation of the engine.
Journal Article

Diesel Cold-Start Emission Control Research for 2015-2025 LEV III Emissions

2013-04-08
2013-01-1301
The diesel engine can be an effective solution to meet future greenhouse gas and fuel economy standards, especially for larger segment vehicles. However, a key challenge facing the diesel is the upcoming LEV III emissions standard which will require significant reductions of hydrocarbon (HC) and oxides of nitrogen (NOx) from current levels. The challenge stems from the fact that diesel exhaust temperatures are much lower than gasoline engines so the time required to achieve effective emissions control with current aftertreatment devices is considerably longer. The objective of this study was to determine the potential of a novel diesel cold-start emissions control strategy for achieving LEV III emissions. The strategy combines several technologies to reduce HC and NOx emissions before the start of the second hill of the FTP75.
Technical Paper

Measurement of Laminar Burning Velocity of Multi-Component Fuel Blends for Use in High-Performance SI Engines

2003-10-27
2003-01-3185
A technique was developed for measuring the Laminar Burning Velocity (LBV) of multi-component fuel blends for use in high-performance spark-ignition engines. This technique involves the use of a centrally-ignited spherical combustion chamber, and a complementary analysis code. The technique was validated by examining several single-component fuels, and the computational procedure was extended to handle multi-component fuels without requiring detailed knowledge of their chemical composition. Experiments performed on an instrumented high-speed engine showed good agreement between the observed heat-release rates of the fuels and their predicted ranking based on the measured LBV parameters.
Technical Paper

Vegetable Oils as Alternative Diesel Fuels: Degradation of Pure Triglycerides During the Precombustion Phase in a Reactor Simulating a Diesel Engine

1992-02-01
920194
Vegetable oils are candidates for alternative fuels in diesel engines. These oils, such as soybean, sunflower, rapeseed, cottonseed, and peanut, consist of various triglycerides. The chemistry of the degradation of vegetable oils when used as alternate diesel fuels thus corresponds to that of triglycerides. To study the chemistry occurring during the precombustion phase of a vegetable oil injected into a diesel engine, a reactor simulating a diesel engine was constructed. Pure triglycerides were injected into the reactor in order to determine differences in the precombustion behavior of the various triglycerides. The reactor allowed motion pictures to be prepared of the injection event as the important reaction parameters, such as pressure, temperature, and atmosphere were varied. Furthermore, samples of the degradation products of precombusted triglycerides were collected and analyzed (gas chromatography / mass spectrometry).
Technical Paper

Evaluation of Cold Start Technologies on a 3L Diesel Engine

2016-04-05
2016-01-0823
Increasingly stringent emissions regulations require that modern diesel aftertreatment systems must warm up and begin controlling emissions shortly after startup. While several new aftertreatment technologies have been introduced that focus on lowering the aftertreatment activation temperature, the engine system still needs to provide thermal energy to the exhaust for cold start. A study was conducted to evaluate several engine technologies that focus on improving the thermal energy that the engine system provides to the aftertreatment system while minimizing the impact on fuel economy and emissions. Studies were conducted on a modern common rail 3L diesel engine with a custom dual loop EGR system. The engine was calibrated for low engine-out NOx using various combustion strategies depending on the speed/load operating condition.
Technical Paper

Downspeeding and Supercharging a Diesel Passenger Car for Increased Fuel Economy

2012-04-16
2012-01-0704
The effects of downspeeding and supercharging a passenger car diesel engine were studied through laboratory investigation and vehicle simulation. Changes in the engine operating range, transmission gearing, and shift schedule resulted in improved fuel consumption relative to the baseline turbocharged vehicle while maintaining performance and drivability metrics. A shift schedule optimization technique resulted in fuel economy gains of up to 12% along with a corresponding reduction in transmission shift frequency of up to 55% relative to the baseline turbocharged configuration. First gear acceleration, top gear passing, and 0-60 mph acceleration of the baseline turbocharged vehicle were retained for the downsped supercharged configuration.
Technical Paper

Effects of Various Model Parameters in the Simulation of a Diesel SCR System

2012-04-16
2012-01-1297
A Selective Catalytic Reduction (SCR) system is a simple solution to mitigate high concentration of nitrogen oxides from tail pipe emissions using ammonia as catalyst. In recent years, implementation of stringent emission standards for diesel exhaust made the SCR system even more lucrative aftertreatment solution for diesel engine manufacturer due to its well established reaction mechanism and lower initial cost involved compared to other available options. Nitrogen oxides reduction efficiency and ammonia slip are two main parameters that affects SCR system performance. Therefore, primary design objective of an efficient SCR system is to enhance reduction of nitrogen oxides and control ammonia slip. Both these factors can be improved by having a uniform mixture of ammonia at the SCR inlet. In this mathematical simulation, various parameters that affect accuracy in predicting the uniformity of mixture at the SCR inlet have been documented.
Technical Paper

Development of a Transient-Capable Multi-Cylinder HCCI Engine

2010-04-12
2010-01-1244
Southwest Research Institute, as part of the Clean Diesel IV consortium, built a multi-cylinder HCCI engine that ran in the HCCI combustion mode full-time. The engine was used to develop HCCI fuels, demonstrate the potential operating range of HCCI, and to demonstrate the feasibility of transient control of HCCI. As part of the engine design, a hardware based method of decoupling control of air and EGR was developed and patented [ 1 ]. The system utilized a positive displacement supercharger with a controlled bypass valve for air-flow control, and a high-pressure loop EGR system with variable geometry turbocharger to control the EGR rate. By utilizing the system, the required precision from the air and EGR control in the engine controller was reduced.
Technical Paper

Homogeneous Charge Compression Ignition of Diesel Fuel

1996-05-01
961160
A single-cylinder, direct-injection diesel engine was modified to operate on compression ignition of homogenous mixtures of diesel fuel and air. Previous work has indicated that extremely low emissions and high efficiencies are possible if ignition of homogeneous fuel-air mixtures is accomplished. The limitations of this approach were reported to be misfire and knock. These same observations were verified in the current work. The variables examined in this study included air-fuel ratio, compression ratio, fresh intake air temperature, exhaust gas recirculation rate, and intake mixture temperatures. The results suggested that controlled homogeneous charge compression ignition (HCCI) is possible. Compression ratio, EGR rate, and air fuel ratio are the practical controlling factors in achieving satisfactory operation. It was found that satisfactory power settings are possible with high EGR rates and stoichiometric fuel-air mixtures.
Technical Paper

HCCI in a Variable Compression Ratio Engine-Effects of Engine Variables

2004-06-08
2004-01-1971
Homogeneous Charge Compression Ignition (HCCI) experiments were performed in a variable compression ratio single cylinder engine. This is the fourth paper resulting from work performed at Southwest Research Institute in this HCCI engine. The experimental variables, in addition to speed and load, included compression ratio, EGR level, intake manifold pressure and temperature, fuel introduction location, and fuel composition. Mixture preparation and start of reaction control were identified as fundamental problems that required non-traditional mixture preparation and control strategies. The effects of the independent variable on the start of reaction have been documented. For fuels that display significant pre-flame reactions, the start of the pre-flame reactions is controlled primarily by the selection of the fuel and the temperature history of the fuel air mixture.
Technical Paper

Laser Ignition in a Pre-Mixed Engine: The Effect of Focal Volume and Energy Density on Stability and the Lean Operating Limit

2005-10-24
2005-01-3752
A series of tests using an open beam laser ignition system in an engine run on pre-mixed, gaseous fuels were performed. The ignition system for the engine was a 1064 nm Nd:YAG laser. A single cylinder research engine was run on pre-mixed iso-butane and propane to determine the lean limit of the engine using laser ignition. In addition, the effect of varying the energy density of the ignition kernel was investigated by changing the focal volume and by varying laser energy. The results indicate that for a fixed focal volume, there is a threshold beyond which increasing the energy density [kJ/m3] yields little or no benefit. In contrast, increasing the energy density by reducing the focal volume size decreases lean performance once the focal volume is reduced past a certain point. The effect of ignition location relative to different surfaces in the engine was also investigated. The results show a slight bias in favor of igniting closer to a surface with low thermal conductivity.
Technical Paper

Investigation of an In-cylinder Ion Sensing Assisted HCCI Control Strategy

2005-04-11
2005-01-0068
Recent research activities have greatly expanded the understanding of HCCI, its controlling mechanisms, and operation strategies. However, substantially more work is required before HCCI engines will be ready for production. This includes development of a methodology for feedback and closed-loop control of the fuel and air systems to realize HCCI combustion over the speed load range in a production vehicle. In this paper, we use in-cylinder ion sensing to extract the timing of start of combustion and monitor other combustion information such as knocking as feedback signals for closed loop control of HCCI engines. The ion sensor we use is modified from the existing glow plug. This method will minimize the cost relative to an in-cylinder pressure sensor and signal conditioning circuitry while providing equivalent combustion information for the ECU to control the engine.
Technical Paper

Performance and Emissions of Ethanol and Ethanol-Diesel Blends in Direct-Injected and Pre-Chamber Diesel Engines

1982-02-01
821039
Fumigation, inline mixing, chemically stabilized emulsions and cetane improvers were evaluated as a means of using ethanol in diesel engines. Two turbocharged six-cylinder engines of identical bore and stroke were used, differing in combustion chamber type. Three alcohol proofs were evaluated: 200, 190, and 160. Alcohol was added at the following concentrations: 10, 25, and 50% except in the case of the cetane-improved alcohol. In the latter case a commercial ignition improver for diesel fuel, DII-3, was added to neat alcohol in the proportions of 10, 15, and 20%. Generally, the emissions of CO, total hydrocarbons, and oxides of nitrogen reflected the trends observed in the thermal efficiencies. At light loads, CO and HC emissions were higher than baseline, decreasing to near baseline levels at heavy loads accompanied with higher NOx.
Technical Paper

Engine and Constant Volume Bomb Studies of Diesel ignition and Combustion

1988-10-01
881626
Changing fuel quality, increasingly stringent exhaust emission standards, demands for higher efficiency, and the trend towards higher specific output, all contribute to the need for a better understanding of the ignition process in diesel engines. In addition to the impact on the combustion process and the resulting performance and emissions, the ignition process controls the startability of the engine, which, in turn, governs the required compressions ratio and several of the other engine design parameters. The importance of the ignition process is reflected in the fact that the only combustion property that is specified for diesel fuel is the ignition delay time as indicated by the cetane number. The objective of the work described in this paper was to determine the relationship between the ignition process as it occurs in an actual engine, to ignition in a constant volume combustion bomb.
Technical Paper

Combustion Chamber Development for Flat Firedeck Heavy-Duty Natural Gas Engines

2024-04-09
2024-01-2115
The widely accepted best practice for spark-ignition combustion is the four-valve pent-roof chamber using a central sparkplug and incorporating tumble flow during the intake event. The bulk tumble flow readily breaks up during the compression stroke to fine-scale turbulent kinetic energy desired for rapid, robust combustion. The natural gas engines used in medium- and heavy-truck applications would benefit from a similar, high-tumble pent-roof combustion chamber. However, these engines are invariably derived from their higher-volume diesel counterparts, and the production volumes are insufficient to justify the amount of modification required to incorporate a pent-roof system. The objective of this multi-dimensional computational study was to develop a combustion chamber addressing the objectives of a pent-roof chamber while maintaining the flat firedeck and vertical valve orientation of the diesel engine.
X