Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Technical Paper

Development of an Emission Controls Concept for an IDI Heavy-Duty Diesel Engine Meeting 2007 Phase-In Emission Standards

2007-04-16
2007-01-0235
In order to allow continued production of the AM General Optimizer 6500 during MY 2007 through 2010 this IDI engine (Indirect Injection - swirl chamber) requires sophisticated aftertreatment controls while maintaining its fuel economy and durability. The main purpose of the development program was to retain the relatively inexpensive and simple base engine with distributor pump and waste-gated turbocharger, while adding hardware and software components that allow achievement of the phase-in emission standards for 2007 through 2010. The aftertreatment system consists of Diesel Oxidation Catalyst (DOC), NOx Adsorber Catalyst (or DeNOx Trap - DNT) and Diesel Particle Filter (DPF). In addition to the base hardware, an intake air throttle valve and an in-exhaust fuel injector were installed. The presented work will document the development process for a 2004 certified 6.5 l IDI heavy-duty diesel engine to comply with the 2007 heavy-duty emission standards.
Technical Paper

Effects of Substrate Diameter and Cell Density FTP Performance

2007-04-16
2007-01-1265
An experiment was performed with a 1.3L catalytic converter design containing a front and rear catalyst each having a volume of 0.65 liters. This investigation varied the front catalyst parameters to study the effects of 1) substrate diameter, 2) substrate cell density, 3) Pd loading and 4) Rh loading on the FTP emissions on three different vehicles. Engine displacement varied from 2.4L to 4.7L. Eight different converters were built defined by a Taguchi L-8 array. Cold flow converter restriction results show the tradeoff in converter restriction between substrate cell density and substrate diameter. Vehicle FTP emissions show how the three vehicles are sensitive to the four parameters investigated. Platinum Group Metals (PGM) prices and Federal Test Procedure (FTP) emissions were used to define the emission value between the substrate properties of diameter and cell density to palladium (Pd) and rhodium (Rh) concentrations.
Technical Paper

Embedded Software - Issues and Challenges

2009-05-13
2009-01-1617
Embedded software is a software system that permanently resides in a device whose operations it controls. Typically, embedded systems are housed on flash memory or ROM chip and may be found in systems like cellular phones, household and office appliances having digital interfaces, medical equipment, automotive components, avionics etc. The fundamental problem facing the design of embedded systems is heterogeneity. Multiple styles of algorithms (e.g. signal processing, communications, and controls) are implemented using a variety of technologies (e.g., digital signal processors, microcontrollers, field-programmable gate arrays, application-specific integrated circuits, and real-time operating systems).Other challenges in automotive development are increasing requirements and therefore increasing size and complexity of the code, development and management of offshore / muti-site software development to reduce costs.
Technical Paper

Embedded Software - Issues and Challenges

2010-04-12
2010-01-0669
Embedded software is a software system that permanently resides in a device whose operations it controls. Typically, embedded systems are housed on flash memory or ROM chip and may be found in systems like cellular phones, household and office appliances having digital interfaces, medical equipment, automotive components, avionics etc. The fundamental problem facing the design of embedded systems is heterogeneity. Multiple styles of algorithms (e.g. signal processing, communications, and controls) are implemented using a variety of technologies (e.g., digital signal processors, microcontrollers, field-programmable gate arrays, application-specific integrated circuits, and real-time operating systems).Other challenges in automotive development are increasing requirements and therefore increasing size and complexity of the code, development and management of offshore / muti-site software development to reduce costs.
Technical Paper

Toward Requirements for a Web-based Icing Training Program for Flight Dispatchers

2003-06-16
2003-01-2151
The Icing Branch at NASA Glenn Research Center has funded an exploratory effort to identify requirements for developing a flight dispatcher-centered web-based icing training program that would be available for all airspace users. Through research and discussions with personnel at airlines, target areas were identified as influences on the requirements for the training system: 1 Flight dispatchers' icing related judgments and decision-making; 2 Certification, new hire and recurrent flight dispatcher training with respect to icing; 3 Icing related weather sources and the problems that flight dispatchers may have in their interpretation; 4 Pedagogical strategies (such as flight dispatcher-centered scenario-based approaches) for delivering flight dispatcher training content; and 5 Concerns/constraints with respect to web-based training for flight dispatchers.
Technical Paper

Constitutive Modeling of Polymers Subjected to High Strain Rates

2001-03-05
2001-01-0472
A biaxial test procedure is used to assess the constitutive properties of polymers in tension. The constitutive constants are derived for high strain rate applications such as those associated with crashworthiness studies. The test procedure is used in conjunction with a time- and strain-dependent quasi-linear viscoelastic constitutive law consisting of a Mooney-Rivlin formulation combined with Maxwell elements. The procedure is demonstrated by describing the stress vs. strain relationship of a rubber specimen subjected to a step-relaxation input. The constitutive equation is transformed from a nonlinear convolution integral to a set of first order differential equations. These equations, with the appropriate boundary conditions, are solved numerically to obtain transient stresses in two principal directions. Material constants for use in the explicit LS-Dyna non-linear finite element code are provided.
Technical Paper

Wear in Cummins M-11/EGR Test Engines

2002-05-06
2002-01-1672
The Cummins M-11/EGR diesel engine test is a key tool in evaluating lubricants for the new PC-9 performance category. Wear on liners, crossheads, rocker arms and top ring faces of M-11/EGR high soot test engines operated with two different test cycles was studied through analytical surface techniques. The first test cycle used in this study was an early prototype PC-9 cycle, and the second test cycle was the PC-9 test procedure. Abrasive wear was observed on liners, crossheads and top ring faces. In addition to abrasive wear, corrosive wear was also found on M-11/EGR liners. However, no corrosive wear was observed on crossheads, rocker arms or top ring faces. Soot provides the major contribution to abrasive wear, since the widths of the relatively uniform parallel grooves in the wear scars closely match the primary soot particle sizes. More importantly, soot produced by the M-11/EGR engine was found to be harder than the engine parts.
Technical Paper

Low Temperature Performance of Commercial SAE 5W-30 Oils in Engines and Their Correlation with Bench Tests

1992-02-01
920650
A 2.3 Liter, overhead cam engine was motored in a sub-zero temperature room to measure the flow characteristics of several SAE 5W-30 commercial lubricants. The lubricant pressure and rate of pressure rise were measured at 8 different points in the engine. The engine was cooled either by an extended overnight cooling program or a constant cooling rate program. These cooling programs were similar to those used in ASTM D4684 and D5133 respectively. During each test the power to motor the engine, as well as the lubricant pressurization time was monitored. A video record was made of each of the tests for later review. In these tests, a correlation was found between lubricant pressurization time and pumping viscosity as measured by the bench test methods, ASTM D4684 and D5133. Significant differences were found between the engine's response to an oil and its ranking by the pumping viscosity bench tests.
Technical Paper

A Method for the Experimental Investigation of Acceleration as a Mechanism of Aortic Injury

2005-04-11
2005-01-0295
Rupture of the thoracic aorta is a leading cause of rapid fatality in automobile crashes, but the mechanism of this injury remains unknown. One commonly postulated mechanism is a differential motion of the aortic arch relative to the heart and its neighboring vessels caused by high-magnitude acceleration of the thorax. Recent Indy car crash data show, however, that humans can withstand accelerations exceeding 100 g with no injury to the thoracic vasculature. This paper presents a method to investigate the efficacy of acceleration as an aortic injury mechanism using high-acceleration, low chest deflection sled tests. The repeatability and predictability of the test method was evaluated using two Hybrid III tests and two tests with cadaver subjects. The cadaver tests resulted in sustained mid-spine accelerations of up to 80 g for 20 ms with peak mid-spine accelerations of up to 175 g, and maximum chest deflections lower than 11% of the total chest depth.
Technical Paper

An Application of Crabon Canister Modeling to Air Fuel Ratio Control and Idle By-Pass Control

1999-03-01
1999-01-1093
Due to the stringent emission regulations, On-Board Diagnostics II (OBD II) and the requirement of enhanced evaporative emissions test procedure, an aggressive canister purge control strategy is required for automotive vehicles. The enhanced evaporative emissions test procedure has forced car manufacturer to purge the carbon canister in the vehicle idle condition so that production vehicles meet the SHED and hot soak test requirements. This not only worsens the idle speed quality but also tends to increase exhaust emission levels. Using analytical models of evaporative air and fuel, feed-forward control strategy for both idle by-pass air and air to fuel ratio can be improved. This paper demonstrates an application of evaporative system modeling to the idle air and air to fuel ratio control.
Technical Paper

Correction of Beam Steering for Optical Measurements in Turbulent Reactive Flows

2021-04-06
2021-01-0428
The application of optical diagnostics in turbulent reactive flows often suffers from the beam steering (BS) effects, resulting in degraded image quality and/or measurement accuracy. This work investigated a method to correct the BS effects to improve the accuracy of optical diagnostics, with particle imagine velocimetry (PIV) measurements on turbulent reactive flames as an example. The proposed method used a guiding laser to correct BS. Demonstration in laboratory turbulent flames showed promising results where the accuracy of PIV measurement was significantly enhanced. Applicability to more complicated and practical situations are discussed.
Technical Paper

Neck Validation of Multibody Human Model under Frontal and Lateral Impacts using an Optimization Technique

2015-04-14
2015-01-1469
Multibody human models are widely used to investigate responses of human during an automotive crash. This study aimed to validate a commercially available multibody human body model against response corridors from volunteer tests conducted by Naval BioDynamics Laboratory (NBDL). The neck model consisted of seven vertebral bodies, and two adjacent bodies were connected by three orthogonal linear springs and dampers and three orthogonal rotational springs and dampers. The stiffness and damping characteristics were scaled up or down to improve the biofidelity of the neck model against NBDL volunteer test data because those characteristics were encrypted due to confidentiality. First, sensitivity analysis was performed to find influential scaling factors among the entire set using a design of experiment.
Technical Paper

Rollover Initiation Simulations for Designing Rollover Initiation Test System (RITS)

2014-04-01
2014-01-0530
Some rollover test methods, which impose a touchdown condition on a test vehicle, have been developed to study vehicle crashworthiness and occupant protection in rollover crashes. In ground-tripped rollover crashes, speed, steering maneuver, braking, vehicle inertial and geometric properties, topographical and road design characteristics, and soil type can all affect vehicle touchdown conditions. It is presumed that while there may be numerous possible combinations of kinematic metrics (velocity components and orientation) at touchdown, there are also numerous combinations of metrics that are not likely to occur in rollover crashes. To determine a realistic set of touchdown conditions to be used in a vehicle rollover crash test, a lateral deceleration sled-based non-destructive rollover initiation test system (RITS) with a fully programmable deceleration pulse is in development.
Technical Paper

On-Vehicle Performance Comparison of an R-152a and R-134a Heat Pump System

2003-03-03
2003-01-0733
As automotive power-train systems become more efficient, less waste heat is available for vehicle passenger cabin warming. As a result, alternative heating technologies are being investigated to alleviate this shortcoming. One alternative is to operate the existing A/C system in reverse (heat pump mode), thus providing supplemental heat. Recently, the environmental impact of refrigerant emissions has come under global scrutiny. The concern is their potential for global warming. Thus, the environmental characteristic of merit that makes for a more benign refrigerant in terms of emissions is lower Global Warming Potential (GWP). R-152a is a more environmentally benign refrigerant compared to R-134a with a GWP of 120 vs. 1,300 [1] and [2]. Both refrigerants are hydro-fluorocarbons - HFCs - (contain no chlorine) and hence, have zero ozone depletion potential. An environmentally benign refrigerant touted as a potential replacement for R-134a, is CO2.
Technical Paper

Analysis of Vehicle Kinematics, Injuries and Restraints in DRoTS Tests to Match Unconstrained Rollover Crashes

2016-04-05
2016-01-1518
Multiple laboratory dynamic test methods have been developed to evaluate vehicle crashworthiness in rollover crashes. However, dynamic test methods remove some of the characteristics of actual crashes in order to control testing variables. These simplifications to the test make it difficult to compare laboratory tests to crashes. One dynamic method for evaluating vehicle rollover crashworthiness is the Dynamic Rollover Test System (DRoTS), which simulates translational motion with a moving road surface and constrains the vehicle roll axis to a fixed plane within the laboratory. In this study, five DRoTS vehicle tests were performed and compared to a pair of unconstrained steering-induced rollover tests. The kinematic state of the unconstrained vehicles at the initiation of vehicle-to-ground contact was determined using instrumentation and touchdown parameters were matched in the DRoTS tests.
X