Refine Your Search

Topic

Author

Search Results

Technical Paper

In-Depth Considerations for Electric Vehicle Braking Systems Operation with Steep Elevation Changes and Trailering

2021-10-11
2021-01-1263
As the automotive industry prepares to roll out an unprecedented range of fully electric propulsion vehicle models over the next few years - it really brings to a head for folks responsible for brakes what used to be the subject of hypothetical musings and are now pivotal questions for system design. How do we really go about designing brakes for electric vehicles, in particular, for the well-known limit condition of descending a steep grade? What is really an “optimal’ design for brakes considering the imperatives for the entire vehicle? What are the real “limit conditions” for usage that drive the fundamental design? Are there really electric charging stations planned for or even already existing in high elevations that can affect regenerative brake capacity on the way down? What should be communicated to drivers (if anything) about driving habits for electric vehicles in routes with significant elevation change?
Journal Article

Consequences of Deep Cycling 24 Volt Battery Strings

2015-07-01
2015-01-9142
Deep charge and discharge cycling of 24 Volt battery strings composed of two 12 Volt VRLA batteries wired in series affects reliability and life expectancy. This is a matter of interest in vehicle power source applications. These cycles include those specific operational cases requiring the delivery of the full storage capacity during discharge. The concern here is related to applications where batteries serve as a primary power source and the energy content is an issue. It is a common practice for deep cycling a 24 volt battery string to simply add the specified limit voltages during charge and discharge for the individual 12 Volt batteries. In reality, the 12 Volt batteries have an inherent capacity variability and are not identical in their performance characteristics. The actual voltages of the individual 12 Volt batteries are not identical.
Journal Article

An Experimental Survey of Li-Ion Battery Charging Methods

2016-05-01
2015-01-9145
Lithium-Ion batteries are the standard portable power solution to many consumers and industrial applications. These batteries are commonly used in laptop computers, heavy duty devices, unmanned vehicles, electric and hybrid vehicles, cell phones, and many other applications. Charging these batteries is a delicate process because it depends on numerous factors such as temperature, cell capacity, and, most importantly, the power and energy limits of the battery cells. Charging capacity, charging time and battery pack temperature variations are highly dependent on the charging method used. These three factors can be of special importance in applications with strict charging time requirements or with limited thermal management capabilities. In this paper, three common charging methods are experimentally studied and analyzed. Constant-current constant-voltage, the time pulsed charging method, and the multistage constant current charging methods were considered.
Journal Article

Brake System Performance at Higher Mileage

2017-09-17
2017-01-2502
The purchase of a new automobile is unquestionably a significant investment for most customers, and with this recognition, comes a correspondingly significant expectation for quality and reliability. Amongst automotive systems -when it comes to considerations of reliability - the brakes (perhaps along with the tires) occupy a rarified position of being located in a harsh environment, subjected to continuous wear throughout their use, and are critical to the safe performance of the vehicle. Maintenance of the brake system is therefore a fact of life for most drivers - something that almost everyone must do, yet given the potentially considerable expense, it is something that of great benefit to minimize.
Technical Paper

Pedestrian Orientation Estimation Using CNN and Depth Camera

2020-04-14
2020-01-0700
This work presents a method for estimating human body orientation using a combination of convolutional neural network (CNN) and stereo camera in real time. The approach uses the CNN model to predict certain human body keypoints then transforms these points into a 3D space using the stereo vision system to estimate the body orientations. The CNN module is trained to estimate the shoulders, the neck and the nose positions, detecting of three points is required to confirm human detection and provided enough data to translate the points into 3D space.
Journal Article

Scuffing Test Rig for Piston Wrist Pin and Pin Bore

2015-04-14
2015-01-0680
In practice, the piston wrist pin is either fixed to the connecting rod or floats between the connecting rod and the piston. The tribological behavior of fixed wrist pins have been studied by several researchers, however there have been few studies done on the floating wrist pin. A new bench rig has been designed and constructed to investigate the tribological behavior between floating pins and pin bore bearings. The experiments were run using both fixed pins and floating pins under the same working conditions. It was found that for fixed pins there was severe damage on the pin bore in a very short time (5 minutes) and material transfer occurs between the wrist pin and pin bore; however, for the floating pin, even after a long testing time (60 minutes) there was minimal surface damage on either the pin bore or wrist pin.
Technical Paper

Driver Visual Focus of Attention Estimation in Autonomous Vehicles

2020-04-14
2020-01-1037
An existing challenge in current state-of-the-art autonomous vehicles is the process of safely transferring control from autonomous driving mode to manual mode because the driver may be distracted with secondary tasks. Such distractions may impair a driver’s situational awareness of the driving environment which will lead to fatal outcomes during a handover. Current state-of-the-art vehicles notify a user of an imminent handover via auditory, visual, and physical alerts but are unable to improve a driver’s situational awareness before a handover is executed. The overall goal of our research team is to address the challenge of providing a driver with relevant information to regain situational awareness of the driving task. In this paper, we introduce a novel approach to estimating a driver’s visual focus of attention using a 2D RGB camera as input to a Multi-Input Convolutional Neural Network with shared weights. The system was validated in a realistic driving scenario.
Technical Paper

Corroborative Evaluation of the Real-World Energy Saving Potentials of InfoRich Eco-Autonomous Driving (iREAD) System

2020-04-14
2020-01-0588
There has been an increasing interest in exploring the potential to reduce energy consumption of future connected and automated vehicles. People have extensively studied various eco-driving implementations that leverage preview information provided by on-board sensors and connectivity, as well as the control authority enabled by automation. Quantitative real-world evaluation of eco-driving benefits is a challenging task. The standard regulatory driving cycles used for measuring exhaust emissions and fuel economy are not truly representative of real-world driving, nor for capturing how connectivity and automation might influence driving trajectories. To adequately consider real-world driving behavior and potential “off-cycle” impacts, this paper presents four collaborative evaluation methods: large-scale simulation, in-depth simulation, vehicle-in-the-loop testing, and vehicle road testing.
Technical Paper

Effect of Head and Neck Anthropometry on the Normal Range of Motion of the Cervical Spine of Prepubescent Children

2009-06-09
2009-01-2302
Application of cervical spine range of motion data and related anthropometric measures of the head and neck include physical therapy, product design, and computational modeling. This study utilized the Cervical Range of Motion device (CROM) to define the normal range of motion of the cervical spine for subjects five (5) through ten (10) years of age. And, the data was collected and analyzed with respect to anatomical measures such as head circumference, face height, neck length, and neck circumference. This study correlates these static anthropometric measures to the kinematic measurement of head flexion, extension, lateral extension, and rotation.
Technical Paper

High Voltage Hybrid Battery Tray Design Optimization

2011-04-12
2011-01-0671
Hybrid high voltage battery pack is not only heavy mass but also large in dimension. It interacts with the vehicle through the battery tray. Thus the battery tray is a critical element of the battery pack that interfaces between the battery and the vehicle, including the performances of safety/crash, NVH (modal), and durability. The tray is the largest and strongest structure in the battery pack holding the battery sections and other components including the battery disconnect unit (BDU) and other units that are not negligible in mass. This paper describes the mass optimization work done on one of the hybrid batteries using CAE simulation. This was a multidisciplinary optimization project, in which modal performance and fatigue damage were accessed through CAE analysis at both the battery pack level, and at the vehicle level.
Technical Paper

Defining In-Vehicle Location and Functional Attributes of a ‘Button-Style Electronic Automatic Transmission Shifter’ Using DFSS Methodology with Customer Clinic Approach

2017-03-28
2017-01-1131
The implementation of electronic shifters (e-shifter) for automatic transmissions in vehicles has created many new opportunities for the customer facing transmission interface and in-vehicle packaging. E-shifters have become popular in recent years as their smaller physical size leads to packaging advantages, they reduce the mass of the automatic transmission shift system, they are easier to install during vehicle assembly, and act as an enabler for autonomous driving. A button-style e-shifter has the ability to create a unique customer interface to the automatic transmission, as it is very different from the conventional column lever or linear console shifter. In addition to this, a button-style e-shifter can free the center console of valuable package space for other customer-facing functions, such as storage bins and Human-Machine Interface controllers.
Technical Paper

High Power Cell for Mild and Strong Hybrid Applications Including Chevrolet Malibu

2017-03-28
2017-01-1200
Electric vehicles have a strong potential to reduce a continued dependence on fossil fuels and help the environment by reducing pollution. Despite the desirable advantage, the introduction of electrified vehicles into the market place continues to be a challenge due to cost, safety, and life of the batteries. General Motors continues to bring vehicles to market with varying level of hybrid functionality. Since the introduction of Li-ion batteries by Sony Corporation in 1991 for the consumer market, significant progress has been made over the past 25 years. Due to market pull for consumer electronic products, power and energy densities have significantly increased, while costs have dropped. As a result, Li-ion batteries have become the technology of choice for automotive applications considering space and mass is very critical for the vehicles.
Technical Paper

Advancements in Hardware-in-the-Loop Technology in Support of Complex Integration Testing of Embedded System Software

2011-04-12
2011-01-0443
Automotive technology is rapidly changing with electrification of vehicles, driver assistance systems, advanced safety systems etc. This advancement in technology is making the task of validation and verification of embedded software complex and challenging. In addition to the component testing, integration testing imposes even tougher requirements for software testing. To meet these challenges dSPACE is continuously evolving the Hardware-In-the-Loop (HIL) technology to provide a systematic way to manage this task. The paper presents developments in the HIL hardware technology with latest quad-core processors, FPGA based I/O technology and communication bus systems such as Flexray. Also presented are developments of the software components such as advanced user interfaces, GPS information integration, real-time testing and simulation models. This paper provides a real-world example of implication of integration testing on HIL environment for Chassis Controls.
Technical Paper

NVH Development of EU5 2.0L and 2.2L Diesel Engine

2011-04-12
2011-01-0932
There is higher and higher demand by customers for vehicles with the maximum level of comfort, this aspect being a target to be achieved together with the general trend to increase performance and also with the necessity to reduce engine out emissions to satisfy the new environmental regulations. GMDAT has recently developed new EU5 2.0 and 2.2 liter L4-cylinder turbocharged Diesel engines that, to address customer demands, have improved power, lower exhaust gas emissions and NVH performance aligned to best in class in its segment. With the final aim of making this engine best in class from an NVH perspective, the NVH development has been executed in a very structured way, going through target setting and deployment, concept and design, combustion and mechanical development through computational analysis first and subsequently experimental tests.
Technical Paper

An Innovative Hybrid Powertrain for Small and Medium Boats

2018-04-03
2018-01-0373
Hybridization is a mainstream technology for automobiles, and its application is rapidly expanding in other fields. Marine propulsion is one such field that could benefit from electrification of the powertrain. In particular, for boats to sail in enclosed waterways, such as harbors, channels, lagoons, a pure electric mode would be highly desirable. The main challenge to accomplish hybridization is the additional weight of the electric components, in particular the batteries. The goal of this project is to replace a conventional 4-stroke turbocharged Diesel engine with a hybrid powertrain, without any penalty in terms of weight, overall dimensions, fuel efficiency, and pollutant emissions. This can be achieved by developing a new generation of 2-Stroke Diesel engines, and coupling them to a state-of-the art electric system. For the thermal units, two alternative designs without active valve train are considered: opposed piston and loop scavenged engines.
Technical Paper

“Taguchi Customer Loss Function” Based Functional Requirements

2018-04-03
2018-01-0586
Understanding customer expectations is critical to satisfying customers. Holding customer clinics is one approach to set winning targets for the engineering functional measures to drive customer satisfaction. In these clinics, customers are asked to operate and interact with vehicle systems or subsystems such as doors, lift gates, shifters, and seat adjusters, and then rate their experience. From this customer evaluation data, engineers can create customer loss or preference functions. These functions let engineers set appropriate targets by balancing risks and benefits. Statistical methods such as cumulative customer loss function are regularly applied for such analyses. In this paper, a new approach based on the Taguchi method is proposed and developed. It is referred to as Taguchi Customer Loss Function (TCLF).
Technical Paper

A Computational Study on the Critical Ignition Energy and Chemical Kinetic Feature for Li-Ion Battery Thermal Runaway

2018-04-03
2018-01-0437
Lithium-ion (Li-ion) batteries and issues related to their thermal management and safety have been attracting extensive research interests. In this work, based on a recent thermal chemistry model, the phenomena of thermal runaway induced by a transient internal heat source are computationally investigated using a three-dimensional (3D) model built in COMSOL Multiphysics 5.3. Incorporating the anisotropic heat conductivity and typical thermal chemical parameters available from literature, temperature evolution subject to both heat transfer from an internal source and the activated internal chemical reactions is simulated in detail. This paper focuses on the critical runaway behavior with a delay time around 10s. Parametric studies are conducted to identify the effects of the heat source intensity, duration, geometry, as well as their critical values required to trigger thermal runaway.
Technical Paper

IGBT Power Modules Evaluation for GM Electrified Vehicles

2018-04-03
2018-01-0460
GM has recently developed two types of plug-in electric vehicles. First is an extended range electric vehicle such as the Volt, and the second is a battery electric vehicle such as the Bolt. An overview, of traction inverter and power module used in GM battery electric vehicles, is presented. IGBT power modules are critical components used in traction inverters for driving GM Electrified Vehicles. IGBT power modules are also described in a benchmarking study using key metrics based on horizontal die configuration, layout and vertical thermal stack. Power Module evaluation test set up, procedure and instrumentation used in GM Power Module Lab, Pontiac, Michigan are described. GM Electrification development journey depends on IGBT power module passive test benches; turn on/off energy loss tester, thermal resistance tester, and slow/fast power cycles testers (fast junction temperature change, in seconds, and slow baseplate temperature change, in minutes).
Technical Paper

Utilizing Finite Element Tools to Model Objective Seat Comfort Results

2012-04-16
2012-01-0074
The comfort assessment of seats in the automotive industry has historically been accomplished by subjective ratings. This approach is expensive and time consuming since it involves multiple prototype seats and numerous people in supporting processes. In order to create a more efficient and robust method, objective metrics must be developed and utilized to establish measurable boundaries for seat performance. Objective measurements already widely accepted, such as IFD (Indentation Force Deflection) or CFD (Compression Force Deflection) [1], have significant shortcomings in defining seat comfort. The most obvious deficiency of these component level tests is that they only deal with a seats' foam rather than the system response. Consequently, these tests fail to take into account significant factors that affect seat comfort such as trim, suspension, attachments and other components.
X