Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Model-Based Comparison of Passive SCR Aftertreatment Systems for Electrified Diesel Applications

2020-06-30
2020-37-0023
The Diesel powertrain remains an important CO2 reduction technology in specific market segments due to its inherent thermodynamic combustion efficiency advantages. Diesel powertrain electrification can bring further potential for CO2 emissions reduction. However, the associated reduction in the exhaust gas temperature may negatively impact the performance of the exhaust aftertreatment (EAT) system and challenge the abatement of other emissions, especially NOx. Considering that active urea-SCR systems may be required to ensure compliance with the legislative limits, the total cost of the hybrid Diesel powertrain is expected to increase even more, therefore making it less commercially attractive. We present a model-based analysis of a Diesel hybrid electric vehicle (HEV) which is combined with an EAT system using Lean-NOx trap (LNT) technology.
Journal Article

Development of a Highly Anti-Corrosive Organic-Inorganic Hybrid Paint

2016-04-05
2016-01-0540
A highly anti-corrosive organic-inorganic hybrid paint for automotive steel parts has been developed. The inorganic component included in the paint is silicon dioxide (SiO2), which has the capability to passivate zinc. By application of the paint on a trivalent chromatetreated zinc-plated steel sheet or a trivalent chromate-treated zinc-nickel-plated steel sheet, high anti-corrosion protection can be provided to steel materials. Particularly in the case of application over a zinc-nickel-plated steel sheet, 0 mm corrosion depth after a cyclic corrosion test (CCT) of 450 cycles was demonstrated.
Journal Article

Synergetic DOC-DPF System Optimization Using Advanced Models

2017-01-10
2017-26-0121
Modern ‘DOC-cDPF’ systems for diesel exhaust are employing Pt-, Pd- as well as Pt/Pd alloy- based coatings to ensure high conversion efficiency of CO, HC even at low temperatures. Depending on the target application, these coatings should be also optimized towards NO2 generation which is involved in low temperature soot oxidation as well as in SCR-based deNOx. Zeolite materials are also frequently used to control cold-start HC emissions. Considering the wide variety of vehicles, engines and emission targets, there is no single optimum coating technology. The main target is therefore to maximize synergies rather than to optimize single components. At the same time, the system designer has nowadays a wide range of technologies to choose from, including PGM alloyed combinations (Pt/Pd), multiple layers and zones applicable to both DOCs and DPFs.
Journal Article

Calibration and Validation of a Diesel Oxidation Catalyst Model: from Synthetic Gas Testing to Driving Cycle Applications

2011-04-12
2011-01-1244
To meet future stringent emission regulations such as Euro6, the design and control of diesel exhaust after-treatment systems will become more complex in order to ensure their optimum operation over time. Moreover, because of the strong pressure for CO₂ emissions reduction, the average exhaust temperature is expected to decrease, posing significant challenges on exhaust after-treatment. Diesel Oxidation Catalysts (DOCs) are already widely used to reduce CO and hydrocarbons (HC) from diesel engine emissions. In addition, DOC is also used to control the NO₂/NOx ratio and to generate the exothermic reactions necessary for the thermal regeneration of Diesel Particulate Filter (DPF) and NOx Storage and Reduction catalysts (NSR). The expected temperature decrease of diesel exhaust will adversely affect the CO and unburned hydrocarbons (UHC) conversion efficiency of the catalysts. Therefore, the development cost for the design and control of new DOCs is increasing.
Technical Paper

Low Permeation Technologies For Plastic Fuel Tanks

2003-03-03
2003-01-0790
Plastic materials are used for fuel tanks for automobiles because they are lightweight and highly durable and help these tanks ensure a capacity. However, plastic fuel tanks have the disadvantage of easily allowing the fuel to permeate through. To solve this problem, HDPE is used nowadays as the main material, and fuel tanks using EVOH for a barrier material and formed by multi-layer blowing are installed in the majority of automobiles conforming to the Tier 1 regulations set by EPA and the LEV I regulations set by CARB. In view of EPA's Tier 2 regulations and CARB's LEV II regulations, both of which will be launched in the near future, plastic fuel tanks with a lower level of fuel vapor permeability (hereinafter referred to as “permeability”) are desired. We thus developed a plastic fuel tank that is much lower than conventional plastic fuel tanks in permeability. This low-permeation plastic fuel tank may easily conform to the Tier 2 and LEV II regulations.
X