Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Timing of Head-to-Vehicle Perimeter Contacts in Rollovers

2007-04-16
2007-01-0370
During a rollover accident the position of an occupant within a vehicle at the time of vehicle-to-ground contact affects the occupant's injury potential and injury mechanisms. During rollovers, the accelerations developed during the airborne phases cause an occupant to move away from the vehicle's center of mass towards the perimeter of the vehicle. The occupant is already in contact with vehicle structures during upper vehicle structure-to-ground impacts. The location and extent of the occupant-to-vehicle contacts and the times and locations at which the contacts occur depend upon a variety of factors including occupant size, initial position in the vehicle, restraint status, vehicle geometry, and rollover accident parameters. Onboard and offboard video of existing dolly rollover studies, specifically the “Malibu” studies, were examined to quantify the motion of the occupants' heads and determine the timing and locations of head contacts to the vehicle perimeter.
Technical Paper

An Evaluation of Laminated Side Window Glass Performance During Rollover

2007-04-16
2007-01-0367
In this study, the occupant containment characteristics of automotive laminated safety glass in side window applications was evaluated through two full-scale, full-vehicle dolly rollover crash tests. The dolly rollover crash tests were performed on sport utility vehicles equipped with heat-strengthened laminated safety glass in the side windows in order to: (1) evaluate the capacity of laminated side window safety glass to contain unrestrained occupants during rollover, (2) analyze the kinematics associated with unrestrained occupants during glazing interaction and ejection, and (3) to identify laminated side window safety glass failure modes. Dolly rollovers were performed on a 1998 Ford Expedition and a 2004 Volvo XC90 at a nominal speed of 43 mph, with unbelted Hybrid II Anthropomorphic Test Devices (ATDs) positioned in the outboard seating positions.
Technical Paper

Physical Evidence Associated with Seatbelt Entanglement During a Collision

2007-04-16
2007-01-1501
Occupant ejection may occur during planar and rollover collisions. These ejections can be associated with serious/fatal injuries. Occasionally, occupants will allege that they were wearing a seatbelt immediately before the ejection occurred. Some accident investigators have opined that a seatbelt became disengaged due to collision forces and/or occupant interactions, leaving the occupant essentially unrestrained and exposed to ejection from the vehicle. We present three case studies of collisions with documented seatbelt disengagement at or during the collision, as well as three controlled tests. The release of the seatbelt was always associated with dire consequences for the occupant's outboard upper extremity. Evidence of seatbelt webbing interaction with the occupant was always evident, and the interaction of the belt with the vehicle interior trim was also apparent.
Journal Article

Occupant Kinematics and Injury Response in Steer Maneuver-Induced Furrow Tripped Rollover Testing

2015-04-14
2015-01-1478
Occupant kinematics during rollover motor vehicle collisions have been investigated over the past thirty years utilizing Anthropomorphic Test Devices (ATDs) in various test methodologies such as dolly rollover tests, CRIS testing, spin-fixture testing, and ramp-induced rollovers. Recent testing has utilized steer maneuver-induced furrow tripped rollovers to gain further understanding of vehicle kinematics, including the vehicle's pre-trip motion. The current study consisted of two rollover tests utilizing instrumented test vehicles and instrumented ATDs to investigate occupant kinematics and injury response throughout the entire rollover sequences, from pre-trip vehicle motion to the position of rest. The two steer maneuver-induced furrow tripped rollover tests utilized a mid-sized 4-door sedan and a full-sized crew-cab pickup truck. The pickup truck was equipped with seatbelt pretensioners and rollover-activated side curtain airbags (RSCAs).
X