Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Comparative Analysis for Six-Phase Motor Configurations

2020-04-14
2020-01-0465
In this paper, a comparison between different six-phase machine topologies is conducted considering their technical performance for automotive applications. Asymmetrical and symmetrical configurations, as well as neutral point connection, are considered as candidate topologies and modelled using vector space decomposition (VSD) and double stator or double dq transformations. In both cases, a generalized model to include an arbitrary phase shift between the windings is presented as well as the effect of the neutral connection on the inverter model. For the selection, the steady-state and post-fault performance are considered in terms of control flexibility, fault-tolerant capability, and dc-link voltage utilization. For the latest, the different topologies are evaluated operating in both linear and overmodulation regions based on space vector modulation (SVM).
Journal Article

Dynamic Modeling of an Interior Permanent Magnet Machine with Space-Vector-Modulation-Based Voltage Source Inverter

2020-04-14
2020-01-0469
This paper presents a dynamic model for an interior permanent magnet (IPM) machine with a space-vector-modulation-based voltage source inverter. The dynamic model considers spatial harmonics, cross-coupling and magnetic saturation. In order to include the nonlinear electromagnetic characteristics of the IPM machine, the dynamic model is built based on the current-flux look-up tables obtained from finite element analysis (FEA). The model is co-simulated with the drive system, which considers the effects of the modulation technique and the switching frequency. The dynamic performance of a 60/8 IPM machine is analyzed using the dynamic model at different operating conditions and then validated with the torque waveforms obtained from FEA. The results show that dynamic performance can be analyzed accurately and more quickly using the dynamic model presented in this paper.
X