Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A History of Space Toxicology Mishaps: Lessons Learned and Risk Management

2009-07-12
2009-01-2591
After several decades of human spaceflight, the community of space-faring nations has accumulated a diverse and sometimes harrowing history of toxicological events that have plagued human space endeavors almost from the very beginning. Some lessons have been learned in ground-based test beds and others were discovered the hard way - when human lives were at stake in space. From such lessons one can build a risk-management framework for toxicological events to minimize the probability of a harmful exposure, while recognizing that we cannot predict all possible events. Space toxicologists have learned that relatively harmless compounds can be converted by air revitalization systems into compounds that cause serious harm to the crew.
Journal Article

Modeling and Simulation of a Series Hybrid CNG Vehicle

2014-04-01
2014-01-1802
Predicting fuel economy during early stages of concept development or feasibility study for a new type of powertrain configuration is an important key factor that might affect the powertrain configuration decision to meet CAFE standards. In this paper an efficient model has been built in order to evaluate the fuel economy for a new type of charge sustaining series hybrid vehicle that uses a Genset assembly (small 2 cylinders CNG fueled engine coupled with a generator). A first order mathematical model for a Li-Ion polymer battery is presented based on actual charging /discharging datasheet. Since the Genset performance data is not available, normalized engine variables method is used to create powertrain performance maps. An Equivalent Consumption Minimization Strategy (ECMS) has been implemented to determine how much power is supplied to the electric motor from the battery and the Genset.
Journal Article

Chassis Dynamometer as a Development Platform for Vehicle Hardware In-the-Loop “VHiL”

2013-05-15
2013-01-9018
This manuscript provides a review of different types and categorization of the chassis dynamometer systems. The review classifies the chassis dynamometers based on the configuration, type of rollers and the application type. Additionally the manuscript discusses several application examples of the chassis dynamometer including: performance and endurance mileage accumulation tests, fuel efficiency and exhaust emissions, noise, vibration and harshness testing (NVH). Different types of the vehicle attachment system in the dynamometer cell and its influences on the driving force characteristics and the vehicle acoustic signature is also discussed. The text also highlights the impact of the use of the chassis dynamometer as a development platform and its impact on the development process. Examples of using chassis dynamometer as a development platform using Vehicle Hardware In-the-Loop (VHiL) approach including drivability assessment and transmission calibrations are presented.
Journal Article

Design Description and Initial Characterization Testing of an Active Heat Rejection Radiator with Digital Turn-Down Capability

2009-07-12
2009-01-2419
NASA's proposed lunar lander, Altair, will be exposed to vastly different external temperatures following launch till its final destination on the moon. In addition, the heat rejection is lowest at the lowest environmental temperatures (0.5 kW @ 4K) and highest at the highest environmental temperature (4.5 kW @ 215K). This places a severe demand on the radiator design to handle these extreme turn-down requirements. A radiator with digital turn-down capability is currently under study at JPL as a robust means to meet the heat rejection demands and provide freeze protection while minimizing mass and power consumption. Turndown is achieved by independent control of flow branches with isolating latch valves and a gear pump to evacuate the isolated branches. A bench-top test was conducted to characterize the digital radiator concept. Testing focused on the demonstration of proper valve sequencing to achieve turn-down and recharge of flow legs.
Journal Article

A Practical Simulation Procedure using CFD to Predict Flow Induced Sound of a Turbocharger Compressor

2015-04-14
2015-01-0662
A turbocharger is currently widely used to boost performance of an internal combustion engine. Generally, a turbocharger consists of a compressor which typically is driven by an exhaust turbine. The compressor will influence how the low frequency engine pulsation propagates in the intake system. The compressor will also produce broad-band flow induced sound due to the turbulence flow and high frequency narrowband tonal sound which is associated with rotating blade pressures. In this paper, a practical simulation procedure based on a computational fluid dynamics (CFD) approach is developed to predict the flow induced sound of a turbocharger compressor. In the CFD model of turbocharger compressor, the unsteady, moving wheel, detached eddy simulation (DES) approach are utilized. In this manner, both the broad-band and narrow-band flow induced sound are directly resolved in the CFD computation.
Technical Paper

Neural Network Design of Control-Oriented Autoignition Model for Spark Assisted Compression Ignition Engines

2021-09-05
2021-24-0030
Substantial fuel economy improvements for light-duty automotive engines demand novel combustion strategies. Low temperature combustion (LTC) demonstrates potential for significant fuel efficiency improvement; however, control complexity is an impediment for real-world transient operation. Spark-assisted compression ignition (SACI) is an LTC strategy that applies a deflagration flame to generate sufficient energy to trigger autoignition in the remaining charge. Operating a practical engine with SACI combustion is a key modeling and control challenge. Current models are not sufficient for control-oriented work such as calibration optimization, transient control strategy development, and real-time control. This work describes the process and results of developing a fast-running control-oriented model for the autoignition phase of SACI combustion. A data-driven model is selected, specifically artificial neural networks (ANNs).
Technical Paper

IC Engine Internal Cooling System Modelling Using 1D-CFD Methodology

2020-04-14
2020-01-1168
Internal combustion engine gets heated up due to continuous combustion of fuel. To keep engine working efficiently and prevent components damage due to very high temperature, the engine needs to be cooled down. Based on power output requirement and provision for cooling system, every engine has it’s unique cooling system. Liquid based cooling systems are majorly implemented in automobile. It’s important to keep in mind that during design phase that, cooling the engine will lower the power to fuel consumption ratio. Therefore, during lower ambient conditions, the cooling system should be able to uniformly increase the temperature of the engine components, engine oil and transmission oil. This is achieved by circulating the coolant through cooling jacket, engine oil heater and transmission oil heater, which will be heated by the combustion heat.
Technical Paper

Teen Drivers’ Understanding of Instrument Cluster Indicators and Warning Lights from a Gasoline, a Hybrid and an Electric Vehicle

2020-04-14
2020-01-1199
In the U.S., the teenage driving population is at the highest risk of being involved in a crash. Teens often demonstrate poor vehicle control skills and poor ability to identify hazards, thus proper understanding of automotive indicators and warnings may be even more critical for this population. This research evaluates teen drivers’, between 15 to 17 years of age, understanding of symbols from vehicles featuring advanced driving assistant systems and multiple powertrain configurations. Teen drivers’ (N=72) understanding of automotive symbols was compared to three other groups with specialized driving experience and technical knowledge: automotive engineering graduate students (N=48), driver rehabilitation specialists (N=16), and performance driving instructors (N=15). Participants matched 42 symbols to their descriptions and then selected the five symbols they considered most important.
Technical Paper

Multi-Zone HVAC Development and Validation with Integrated Heated/Vented Seat Control

2020-04-14
2020-01-1247
Vehicle multi-zone automatic Heating, Venting and Air Conditioning (HVAC) is the advanced form of the traditional air conditioning. The advantage of multi-zone automatic HVAC is that it allows the passengers of a vehicle to set a desired temperature for their own zone within the vehicle compartment. This desired temperature is then maintained by the HVAC system, which determines how best to control the available environment data to provide optimal comfort for the passengers. To achieve overall thermal comfort of the occupants in a vehicle, multi-zone HVAC takes things a step further by adding heated steering wheel and heated/vented seats to the overall HVAC control strategy. The heating and cooling of the occupants by this integrated system is performed by complex control algorithms in form of embedded software programs and Private LIN network. This paper describes the approach and tools used to develop, simulate and validate the multi-zone integrated climate control system.
Technical Paper

A DFSS Approach Study on the Effects of Vehicle Cabin Properties on HVAC System’s Cool Down Performance Using 1D Simulation

2020-04-14
2020-01-1258
Due to the increase in heat wave across the globe, maintaining the thermal comfort of passengers in a vehicle is becoming a challenge. Considering global warming, there is a need to shift towards greener refrigerants which in itself causes a marginal degradation in the Heating Ventilation and Air Conditioning (HVAC) system performance. Also the emission norms and regulations demanding for a smaller engine if not for a hybrid or electric vehicle, there is a need for optimally designing the HVAC system since it is directly related with the efficiency of the vehicle and also plays a vital role in the customer comfort. Hence maintaining the comfort level of the passengers needs further exploration and challenging rather than optimizing the HVAC system alone in the competitive market. Conventionally for given system where we need sufficient cooling, the capacity of the components can be increased in order to meet the customer comfort.
Technical Paper

Novel CAE CV Joint Modeling Method for Driveline Half-Shaft at Idle Condition

2020-04-14
2020-01-1265
Idle shake is an important NVH attribute. Vehicles with good NVH characteristics are designed to perform excellent in IDLE and SHAKE conditions. Typically, tactile vibrations at idle are measured at the driver seat and steering wheel. Vibrations caused by engine excitation at idle are passed through several paths to the body structure. The dominant paths being the engine mounts and the half-shafts, either one of them or both can be a major factor influencing the perceived idle vibration in a vehicle. In the past, modeling the half-shafts accurately has been a challenge and often time has been ignored because of modeling complexity. This has led to idle CAE predictions not correlating with test data. The aim of this paper is to describe a finite element modeling method of half-shaft to predict idle vibrations levels.
Technical Paper

Advanced Novel Method to Simplify the Detailed Half-Shaft Model and Rapid Model Development

2020-04-14
2020-01-1274
It has been previously shown that a detailed representation of the half-shaft correlates with test data. Developed detailed half-shaft models have shown improvement in capturing the half-shaft path at vehicle idle condition. Since the detailed half-shaft model needs to capture many components and requires detailed solid geometry for each component represented, full CAD model from half-shaft supplier or part scanning is required. Furthermore, despite the availability of CAD geometry, the detailed half-shaft will require solid meshing of the CV joints, the shaft, linearized springs and manual creation of the complex coordinate systems for orientation of contact points. This paper proposes an automated method to reduce the half-shaft model to a semi-elastic rigid body elements model with linearized spring components. The simplified model reduces the modeling time by eliminating solid meshing of components and automating complex coordinate system development without losing accuracy.
Technical Paper

Virtual Method for Electronic Stop-Start Simulation & VDV Prediction Using Modified Discrete Signal Processing for Short Time Signals

2020-04-14
2020-01-1270
Electronic Stop-Start (ESS) system automatically stops and restarts the engine to save energy, improve fuel economy and reduce emissions when the vehicle is stationary during traffic lights, traffic jams etc. The stop and start events cause unwanted vibrations at the seat track which induce discomfort to the driver and passengers in the vehicle. These events are very short duration events, usually taking less than a second. Time domain analysis can help in simulating this event but it is difficult to see modal interactions and root cause issues. Modal transient analysis also poses a limitation on defining frequency dependent stiffness and damping for multiple mounts. This leads to inaccuracy in capturing mount behavior at different frequencies. Most efficient way to simulate this event would be by frequency response analysis using modal superposition method.
Technical Paper

A Case Study on Reducing the Fuel Pulse Noise from Gasoline Engine Injectors

2020-04-14
2020-01-1276
There are many noise sources from the vehicle fuel system to generate noise inside a vehicle. Among them, the pressure pulsation due to the rapid opening and closing of gasoline engine injectors can cause undesirable fuel pulse noise. As the pressure pulsation propagates in the fuel supply line toward to rear end of the vehicle, the pressure energy is transferred from fuel lines to the vehicle underbody through clips and into the passenger compartment. It is crucial to attenuate the pressure pulsation inside the fuel line to reduce the fuel pulse noise. In this paper, a case study on developing an effective countermeasure to reduce the objectionable fuel pulse noise of a V8 gasoline injection system at engine idle condition is presented. First, the interior noise of a prototype vehicle was tested and the objectionable fuel pulse noise is exhibited. The problem frequency ranges of the pulse noise were identified.
Technical Paper

CAE Modeling Static and Fatigue Performance of Short Glass Fiber Reinforced Polypropylene Coupons and Components

2020-04-14
2020-01-1309
One approach of reducing weight of vehicles is using composite materials, and short glass fiber reinforced polypropylene is one of most popular composite materials. To more accurately predict durability performance of structures made of this kind of composite material, static and fatigue performance of coupons and components made of a short glass fiber reinforced polypropylene has been physically studied. CAE simulations have been conducted accordingly. This paper described details of CAE model setup, procedures, analysis results and correlations to test results for static, fiber orientation flow and fatigue of coupons and a battery tray component. The material configurations include fiber orientations (0, 20 and 90 degrees), and mean stress effect (R = -1.0, -0.5, -0.2, 0.1 and 0.4). The battery tray component samples experience block cycle loading with loading ratio of R = -0.3 and 0.3. The CAE predictions have reasonable correlations to the test results.
Technical Paper

A Vehicle Level Transient Thermal Analysis of Automotive Fuel Tanks

2020-04-14
2020-01-1342
Maintaining the fuel temperature and fuel system components below certain values is an important design objective. Predicting these temperatures is therefore one of the key parts of the vehicle’s thermal management process. One of the physical processes affecting fuel tank temperature is fuel vaporization, which is controlled by the vapor pressure in the tank, fuel composition and fuel temperature. Models are developed to enable the computation of the fuel temperature, fuel vaporization rate in the tank, fuel temperatures along the fuel supply lines, and follow its path to the charcoal canister and into the engine intake. For diesel fuel systems where a fuel return line is used to return excess fluid back to the fuel tank, an energy balance will be considered to calculate the heat added from the high-pressure pump and vehicle under-hood and underbody.
Technical Paper

Integration of Sensitivity Analysis and Design for Six Sigma (DFSS) Methodology into Transient Thermal Analysis

2020-04-14
2020-01-1389
In this paper we present an integrated approach which combines analysis of the effect of simultaneous variations in model input parameters on component or system temperatures. The sensitivity analysis can be conducted by varying model input parameters using specific values that may be of interest to the user. The alternative approach is to use a structured set of parameters generated in the form of a DFSS DOE matrix. The matrix represents a combination of simulation conditions which combine the control factors (CF) and noise factors. CF’s are the design parameters that the engineer can modify to achieve a robust design. Noise factors include parameters that are outside the control of the design engineer. In automotive thermal management, noise factors include changes in ambient temperature, exhaust gas temperatures or aging of exhaust system or heat shields for example.
Technical Paper

Automotive Wheel Metamodeling Using Response Surface Methodology (RSM) Technique

2020-04-14
2020-01-1234
Computational cost plays a major role in the performance of scientific and engineering simulation. This in turn makes the virtual validation process complex and time consuming. In the simulation process, achievement of appropriate level of accurate models as close as physical testing is the root for increase in the computational cost. During preliminary phase of product development, it is difficult to identify the appropriate size, shape and other parameters of the component and they will undergo several modifications in concept and other stages. An approximation model called metamodel or surrogate model has developed for reducing these effects and minimizing the computational cost. Metamodel can be used in the place of actual simulation models. Metamodel can be an algorithm or a mathematical relation representing the relations between input and output parameters.
Journal Article

Sizing of Coolant Passages in an IC Engine Using a Design of Experiments Approach

2015-04-14
2015-01-1734
Determining coolant flow distribution in a topologically complex flow path for efficient heat rejection from the critical regions of the engine is a challenge. However, with the established computational methodology, thermal response of an engine (via conjugate heat transfer) can be accurately predicted [1, 2] and improved upon via Design of Experiment (DOE) study in a relatively short timeframe. This paper describes a method to effectively distribute the coolant flow in the engine coolant cavities and evenly remove the heat from various components using a novel technique of optimization based on an approximation model. The current methodology involves the usage of a sampling technique to screen the design space and generate the simulation matrix. Isight, a process automation and design exploration software, is used to set the framework of this study with the engine thermal simulation setup done in the CFD solver, STAR-CCM+.
Journal Article

Influence of Automatic Engine Stop/Start Systems on Vehicle NVH and Launch Performance

2015-06-15
2015-01-2183
Integration of automatic engine Stop/Start systems in “conventional” drivetrains with 12V starters is a relatively cost-effective measure to reduce fuel consumption. Therefore, automatic engine Stop/Start systems are becoming more prevalent and increasing market share of such systems is predicted. A quick, reliable and consistent engine start behavior is essential for customer acceptance of these systems. The launch of the vehicle should not be compromised by the Stop/Start system, which implies that the engine start time and transmission readiness for transmitting torque should occur within the time the driver releases the brake pedal and de-presses the accelerator pedal. Comfort and NVH aspects will continue to play an important role for customer acceptance of these systems. Hence, the engine stop and re-start behavior should be imperceptible to the driver from both a tactile and acoustic standpoint.
X