Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

1D Thermo-Fluid Dynamic Modeling of Reacting Flows inside Three-Way Catalytic Converters

2009-04-20
2009-01-1510
In this work a detailed model to simulate the transient behavior of catalytic converters is presented. The model is able to predict the unsteady and reacting flows in the exhaust ducts, by solving the system of conservation equations of mass, momentum, energy and transport of reacting chemical species. The en-gine and the intake system have not been included in the simulation, imposing the measured values of mass flow, gas temperature and chemical composition as a boundary condition at the inlet of the exhaust system. A detailed analysis of the diffusion stage triggering is proposed along with simplifications of the physics, finalized to the reduction of the calculation time. Submodels for water condensation and its following evaporation on the monolith surface have been taken into account as well as oxygen storage promoted by ceria oxides.
Journal Article

A Scale Adaptive Filtering Technique for Turbulence Modeling of Unsteady Flows in IC Engines

2015-04-14
2015-01-0395
Swirling flows are very dominant in applied technical problems, especially in IC engines, and their prediction requires rather sophisticated modeling. An adaptive low-pass filtering procedure for the modeled turbulent length and time scales is derived and applied to Menter' original k - ω SST turbulence model. The modeled length and time scales are compared to what can potentially be resolved by the computational grid and time step. If the modeled scales are larger than the resolvable scales, the resolvable scales will replace the modeled scales in the formulation of the eddy viscosity; therefore, the filtering technique helps the turbulence model to adapt in accordance with the mesh resolution and the scales to capture.
Journal Article

A Fatigue Life Prediction Method of Laser Assisted Self-Piercing Rivet Joint for Magnesium Alloys

2015-04-14
2015-01-0537
Due to magnesium alloy's poor weldability, other joining techniques such as laser assisted self-piercing rivet (LSPR) are used for joining magnesium alloys. This research investigates the fatigue performance of LSPR for magnesium alloys including AZ31 and AM60. Tensile-shear and coach peel specimens for AZ31 and AM60 were fabricated and tested for understanding joint fatigue performance. A structural stress - life (S-N) method was used to develop the fatigue parameters from load-life test results. In order to validate this approach, test results from multijoint specimens were compared with the predicted fatigue results of these specimens using the structural stress method. The fatigue results predicted using the structural stress method correlate well with the test results.
Technical Paper

Numerical Assessment of an After-Treatment System Equipped with a Burner to Speed-Up the Light-Off during Engine Cold Start

2021-09-05
2021-24-0089
In the next years, the upcoming emission legislations are expected to introduce further restrictions on the admittable level of pollutants from vehicles measured on homologation cycles and real drive tests. In this context, the strict control of pollutant emissions at the cold start will become a crucial point to comply with the new regulation standards. This will necessarily require the implementation of novel strategies to speed-up the light-off of the reactions occurring in the after-treatment system, since the cold start conditions are the most critical one for cumulative emissions. Among the different possible technological solutions, this paper focuses on the evaluation of the potential of a burner system, which is activated before the engine start. The hypothetical burner exploits the lean combustion of an air-gasoline mixture to generate a high temperature gas stream which is directed to the catalyst section promoting a fast heating of the substrate.
Technical Paper

Polycyclic Aromatic Hydrocarbons Evolution and Interactions with Soot Particles During Fuel Surrogate Combustion: A Rate Rule-Based Kinetic Model

2021-09-05
2021-24-0086
Modeling combustion of transportation fuels remains a difficult task due to the extremely large number of species constituting commercial gasoline and diesel. However, for this purpose, multi-component surrogate fuel models with a reduced number of key species and dedicated reaction subsets can be used to reproduce the physical and chemical traits of diesel and gasoline, also allowing to perform CFD calculations. Recently, a detailed surrogate fuel kinetic model, named C3 mechanism, was developed by merging high-fidelity sub-mechanisms from different research groups, i.e. C0-C4 chemistry (NUI Galway), linear C6-C7 and iso-octane chemistry (Lawrence Livermore National Laboratory), and monocyclic aromatic hydrocarbons (MAHs) and polycyclic aromatic hydrocarbons (PAHs) (ITV-RWTH Aachen and CRECK modelling Lab-Politecnico di Milano).
Technical Paper

Numerical Investigation on GDI Spray under High Injection Pressure up to 100 MPa

2020-09-15
2020-01-2108
In recent years, the increase of gasoline fuel injection pressure is a way to improve thermal efficiency and lower engine-out emissions in GDI homogenous combustion concept. The challenge of controlling particulate formation as well in mass and number concentrations imposed by emissions regulations can be pursued improving the mixture preparation process and avoiding mixture inhomogeneity with ultra-high injection pressure values up to 100 MPa. The increase of the fuel injection pressure in GDI homogeneous systems meets the demand for increased injector static flow, while simultaneously improves the spray atomization and mixing characteristics with consequent better combustion performance. Few studies quantify the effects of high injection pressure on transient gasoline spray evolution. The aim of this work was to simulate with OpenFOAM the spray morphology of a commercial gasoline injected in a constant volume vessel by a prototypal GDI injector.
Technical Paper

Multi-Zone HVAC Development and Validation with Integrated Heated/Vented Seat Control

2020-04-14
2020-01-1247
Vehicle multi-zone automatic Heating, Venting and Air Conditioning (HVAC) is the advanced form of the traditional air conditioning. The advantage of multi-zone automatic HVAC is that it allows the passengers of a vehicle to set a desired temperature for their own zone within the vehicle compartment. This desired temperature is then maintained by the HVAC system, which determines how best to control the available environment data to provide optimal comfort for the passengers. To achieve overall thermal comfort of the occupants in a vehicle, multi-zone HVAC takes things a step further by adding heated steering wheel and heated/vented seats to the overall HVAC control strategy. The heating and cooling of the occupants by this integrated system is performed by complex control algorithms in form of embedded software programs and Private LIN network. This paper describes the approach and tools used to develop, simulate and validate the multi-zone integrated climate control system.
Technical Paper

Advanced Novel Method to Simplify the Detailed Half-Shaft Model and Rapid Model Development

2020-04-14
2020-01-1274
It has been previously shown that a detailed representation of the half-shaft correlates with test data. Developed detailed half-shaft models have shown improvement in capturing the half-shaft path at vehicle idle condition. Since the detailed half-shaft model needs to capture many components and requires detailed solid geometry for each component represented, full CAD model from half-shaft supplier or part scanning is required. Furthermore, despite the availability of CAD geometry, the detailed half-shaft will require solid meshing of the CV joints, the shaft, linearized springs and manual creation of the complex coordinate systems for orientation of contact points. This paper proposes an automated method to reduce the half-shaft model to a semi-elastic rigid body elements model with linearized spring components. The simplified model reduces the modeling time by eliminating solid meshing of components and automating complex coordinate system development without losing accuracy.
Technical Paper

CAE Modeling Static and Fatigue Performance of Short Glass Fiber Reinforced Polypropylene Coupons and Components

2020-04-14
2020-01-1309
One approach of reducing weight of vehicles is using composite materials, and short glass fiber reinforced polypropylene is one of most popular composite materials. To more accurately predict durability performance of structures made of this kind of composite material, static and fatigue performance of coupons and components made of a short glass fiber reinforced polypropylene has been physically studied. CAE simulations have been conducted accordingly. This paper described details of CAE model setup, procedures, analysis results and correlations to test results for static, fiber orientation flow and fatigue of coupons and a battery tray component. The material configurations include fiber orientations (0, 20 and 90 degrees), and mean stress effect (R = -1.0, -0.5, -0.2, 0.1 and 0.4). The battery tray component samples experience block cycle loading with loading ratio of R = -0.3 and 0.3. The CAE predictions have reasonable correlations to the test results.
Technical Paper

Pedestrian Head Impact, Automated Post Simulation Results Aggregation, Visualization and Analysis Using d3VIEW

2020-04-14
2020-01-1330
Euro NCAP Pedestrian head impact protocol mandates the reduction of head injuries, measured using head injury criteria (HIC). Virtual tools driven design comprises of simulating the impact on the hood and post processing the results. Due to the high number of impact points, engineers spend a significant portion of their time in manual data management, processing, visualization and score calculation. Moreover, due to large volume of data transfer from these simulations, engineers face data bandwidth issues particularly when the data is in different geographical locations. This deters the focus of the engineer from engineering and also delays the product development process. This paper describes the development of an automated method using d3VIEW that significantly improves the efficiency and eliminates the data volume difficulties there by reducing the product development time while providing a higher level of simulation results visualization.
Technical Paper

Development of a Computational Algorithm for Estimation of Lead Acid Battery Life

2020-04-14
2020-01-1391
The performance and durability of the lead acid battery is highly dependent on the internal battery temperature. The changes in internal battery temperatures are caused by several factors including internal heat generation and external heat transfer from the vehicle under-hood environment. Internal heat generation depends on the battery charging strategy and electric loading. External heat transfer effects are caused by customer duty cycle, vehicle under-hood components and under-hood ambient air. During soak conditions, the ambient temperature can have significant effect on battery temperature after a long drive for example. Therefore, the temperature rise in a lead-acid battery must be controlled to improve its performance and durability. In this paper a thermal model for lead-acid battery is developed which integrates both internal and external factors along with customer duty cycle to predict battery temperature at various driving conditions.
Technical Paper

Integration of Sensitivity Analysis and Design for Six Sigma (DFSS) Methodology into Transient Thermal Analysis

2020-04-14
2020-01-1389
In this paper we present an integrated approach which combines analysis of the effect of simultaneous variations in model input parameters on component or system temperatures. The sensitivity analysis can be conducted by varying model input parameters using specific values that may be of interest to the user. The alternative approach is to use a structured set of parameters generated in the form of a DFSS DOE matrix. The matrix represents a combination of simulation conditions which combine the control factors (CF) and noise factors. CF’s are the design parameters that the engineer can modify to achieve a robust design. Noise factors include parameters that are outside the control of the design engineer. In automotive thermal management, noise factors include changes in ambient temperature, exhaust gas temperatures or aging of exhaust system or heat shields for example.
Journal Article

Influence of Automatic Engine Stop/Start Systems on Vehicle NVH and Launch Performance

2015-06-15
2015-01-2183
Integration of automatic engine Stop/Start systems in “conventional” drivetrains with 12V starters is a relatively cost-effective measure to reduce fuel consumption. Therefore, automatic engine Stop/Start systems are becoming more prevalent and increasing market share of such systems is predicted. A quick, reliable and consistent engine start behavior is essential for customer acceptance of these systems. The launch of the vehicle should not be compromised by the Stop/Start system, which implies that the engine start time and transmission readiness for transmitting torque should occur within the time the driver releases the brake pedal and de-presses the accelerator pedal. Comfort and NVH aspects will continue to play an important role for customer acceptance of these systems. Hence, the engine stop and re-start behavior should be imperceptible to the driver from both a tactile and acoustic standpoint.
Journal Article

Automobile Powertrain Sound Quality Development Using a Design for Six Sigma (DFSS) Approach

2015-06-15
2015-01-2336
Automotive companies are studying to add extra value in their vehicles by enhancing powertrain sound quality. The objective is to create a brand sound that is unique and preferred by their customers since quietness is not always the most desired characteristic, especially for high-performance products. This paper describes the process of developing a brand powertrain sound for a high-performance vehicle using the DFSS methodology. Initially the customer's preferred sound was identified and analyzed. This was achieved by subjective evaluations through voice-of-customer clinics using vehicles of similar specifications. Objective data were acquired during several driving conditions. In order for the design process to be effective, it is very important to understand the relationship between subjective results and physical quantities of sound. Several sound quality metrics were calculated during the data analysis process.
Journal Article

Design of a Composite Structural Panel for High Volume Production

2015-04-14
2015-01-1311
As CAFE requirements increase, automotive OEMs are pursuing innovative methods to lightweight their Body In Whites (BIWs). Within FCA US, this lightweighting research and development activity often occurs through Decoupled Innovation projects. A Decoupled Innovation team comprised of engineers from the BIW Structures Group, in collaboration with Tier 1 supplier Magna Exteriors, sought to re-design a loadbearing component on the BIW that would offer significant weight savings when the current steel component was replaced with a carbon fiber composite. This paper describes the design, development, physical validation and partnership that resulted in a composite Rear Package Shelf Assembly solution for a high-volume production vehicle. As the CAFE requirements loom closer and closer, these innovation-driven engineering activities are imperative to the successful lightweighting of FCA US vehicles.
Journal Article

Race Motorcycle Smart Wheel

2015-04-14
2015-01-1520
A wheel able to measure the generalized forces at the hub of a race motorcycle has been developed and used. The wheel has a very limited mass. It is made from magnesium with a special structure to sense the forces and provide the required level of stiffness. The wheel has been tested both indoor for preliminary approval and on the track. The three forces and the three moments acting at the hub can be measured with a resolution of 1N and 0.3Nm respectively. A specifically programmed DSP (Digital Signal Processor) embedded in the sensor allows real-time acquisition and processing of the six signals of forces/torques components. The signals are sent via Bluetooth to an onboard receiver connected to the vehicle CAN (Controller Area Network) bus. Each signal is sampled at 200Hz. The wheel can be used to derive the actual tyre characteristics or to record the loads acting at the hub.
Journal Article

Development of a Transient Thermal Analysis Model for Engine Mounts

2016-04-05
2016-01-0192
Engine mount is one of the temperature sensitive components in the vehicle under-hood. Due to increasing requirements for improved fuel economy, the under-hood thermal management has become very challenging in recent years. In order to study the effects of material thermal degradation on engine mount performance and durability; it is required to estimate the temperature of engine mount rubber during various driving conditions. The effect of temperature on physical properties of natural rubber can then be evaluated and the life of engine mount can be estimated. In this paper, a bench test is conducted where the engine mount is exposed to a step change in the environment around it, and the temperature of the rubber section is recorded at several points till a steady state temperature is reached. A time response curve is generated, from which a time constant is determined.
Journal Article

Review and Assessment of Frequency-Based Fatigue Damage Models

2016-04-05
2016-01-0369
Several popular frequency-based fatigue damage models (Wirsching and Light, Ortiz and Chen, Larsen and Lutes, Benascuitti and Tovo, Benascuitti and Tovo with α.75, Dirlik, Zhao and Baker, and Lalanne) are reviewed and assessed. Seventy power spectrum densities with varied amplitude, shape, and irregularity factors from Dirlik’s dissertation are used to study the accuracies of these methods. Recommendations on how to set up the inverse fast Fourier transform to synthesize load data and obtain accurate rainflow cycle counts are given. Since Dirlik’s method is the most commonly used one in industry, a comprehensive investigation of parameter setups for Dirlik’s method is presented. The mean error and standard deviation of the error between the frequency-based model and the rainflow cycle counting method was computed for fatigue slope exponent m ranging from 3 to 12.
Journal Article

A Case Study on Clean Side Duct Radiated Shell Noise Prediction

2017-03-28
2017-01-0444
Engine air induction shell noise is a structure borne noise that radiates from the surface of the air induction system. The noise is driven by pulsating engine induction air and is perceived as annoying by vehicle passengers. The problem is aggravated by the vehicle design demands for low weight components packaged in an increasingly tight under hood environment. Shell noise problems are often not discovered until production intent parts are available and tested on the vehicle. Part changes are often necessary which threatens program timing. Shell noise should be analyzed in the air induction system design phase and a good shell noise analytical process and targets must be defined. Several air induction clean side ducts are selected for this study. The ducts shell noise is assessed in terms of material strength and structural stiffness. A measurement process is developed to evaluate shell noise of the air induction components. Noise levels are measured inside of the clean side ducts.
Journal Article

A Nonlinear Model Predictive Control Strategy with a Disturbance Observer for Spark Ignition Engines with External EGR

2017-03-28
2017-01-0608
This research proposes a control system for Spark Ignition (SI) engines with external Exhaust Gas Recirculation (EGR) based on model predictive control and a disturbance observer. The proposed Economic Nonlinear Model Predictive Controller (E-NMPC) tries to minimize fuel consumption for a number of engine cycles into the future given an Indicated Mean Effective Pressure (IMEP) tracking reference and abnormal combustion constraints like knock and combustion variability. A nonlinear optimization problem is formulated and solved in real time using Sequential Quadratic Programming (SQP) to obtain the desired control actuator set-points. An Extended Kalman Filter (EKF) based observer is applied to estimate engine states, combining both air path and cylinder dynamics. The EKF engine state(s) observer is augmented with disturbance estimation to account for modeling errors and/or sensor/actuator offset.
X