Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Extensional Rheology: New Dimension of Characterizing Automotive Fluids

2017-03-28
2017-01-0364
This paper describes the basic principles of extensional rheometry, and the successful application to a variety of automotive fluids, including gear lubricants, paints, and forming lubricants. These fluids are used under very complex flow fields containing strong extensional (elongational) components. While exact derivation of extensional viscosities involves sophisticated theories, the measurement of liquid filament break-up time can provide fruitful information. Gear lubes showed different break-up time according to the kinematic viscosities. Addition of viscosity modifier (acrylic copolymer) significantly increased the breakup time, whereas surfactants had little effect. Clearcoat paint sample increased the breakup time, perhaps due to the deterioration. The waxy stamping lubricant showed remarkable change in the extensional properties as the temperature is raised.
Technical Paper

Efficiency Evaluation of Lower Viscosity ATF in a Planetary Automatic Transmission for Improved Fuel Economy

2019-04-02
2019-01-1296
With continued industry focus on reducing parasitic transmission and driveline losses, detailed studies are required to quantify potential enablers to improve vehicle fuel economy. Investigations were undertaken to understand the influence of lower viscosity Automatic Transmission Fluids (ATF) on transmission efficiency as compared with conventional fluids. The objectives of this study were to quantify the losses of lower viscosity ATF as compared with conventional ATF, and to understand the influence of ATF properties including viscosities, base oil types, and additive packages on fuel efficiency. The transmission efficiency investigations were conducted on a test bench following a vehicle-based break-in of the transmission using a prescribed drive cycle on a chassis dynamometer. At low temperature, the lower viscosity ATF showed a clear advantage over the conventional ATF in both spin loss and loaded efficiency evaluations.
X