Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Crankcase and Crankshaft Coupled Structural Analysis Based on Hybrid Dynamic Simulation

2013-12-20
2013-01-9047
This paper presents the comparison of two different approaches for crankcase structural analysis. The first approach is a conventional quasi-static simulation, which will not be detailed in this work and the second approach involves determining the dynamic loading generated by the crankshaft torsional, flexural and axial vibrations on the crankcase. The accuracy of this approach consists in the development of a robust mathematical model that can couple the dynamic characteristics of the crankshaft and the crankcase, representing realistically the interaction between both components. The methodology to evaluate these dynamic responses is referred to as hybrid simulation, which consists of the solution of the dynamics of an E-MBS (Elastic Multi Body System) coupled with consecutive FEA (Finite Element Analysis).
Journal Article

Next-Generation Low-Voltage Power Nets Impacts of Advanced Stop/Start and Sailing Functionalities

2017-03-28
2017-01-0896
The range of tasks in automotive electrical system development has clearly grown and now includes goals such as achieving efficiency requirements and complying with continuously reducing CO2 limits. Improvements in the vehicle electrical system, hereinafter referred to as the power net, are mandatory to face the challenges of increasing electrical energy consumption, new comfort and assistance functions, and further electrification. Novel power net topologies with dual batteries and dual voltages promise a significant increase in efficiency with moderate technological and financial effort. Depending on the vehicle segment, either an extension of established 12 V micro-hybrid technologies or 48 V mild hybridization is possible. Both technologies have the potential to reduce fuel consumption by implementing advanced stop/start and sailing functionalities.
Technical Paper

Comparison of Model Predictions with Temperature Data Sensed On-Board from the Li-ion Polymer Cells of an Electric Vehicle

2012-05-15
2011-01-2443
One of the challenges faced when using Li-ion batteries in electric vehicles is to keep the cell temperatures below a given threshold. Mathematical modeling would indeed be an efficient tool to test virtually this requirement and accelerate the battery product lifecycle. Moreover, temperature predicting models could potentially be used on-board to decrease the limitations associated with sensor based temperature feedbacks. Accordingly, we present a complete modeling procedure which was used to calculate the cell temperatures during a given electric vehicle trip. The procedure includes a simple vehicle dynamics model, an equivalent circuit battery model, and a 3D finite element thermal model. Model parameters were identified from measurements taken during constant current and pulse current discharge tests. The cell temperatures corresponding to an actual electric vehicle trip were calculated and compared with measured values.
Technical Paper

Developing Drivetrain Robustness for Small Engine Testing

2013-04-08
2013-01-0400
The increased demand in fuel economy and the reduction of CO₂ emissions results in continued efforts to downsize engines. The downsizing efforts result in engines with lower displacement as well as lower number of cylinders. In addition to cylinder and displacement downsizing the development community embarks on continued efforts toward down-speeding. The combination of the aforementioned factors results in engines which can have high levels of torsional vibrations. Such behavior can have detrimental effects on the drivetrain particularly during the development phase of these. Driveshafts, couplings, and dynamometers are exposed to these torsional forces and depending on their frequency costly damages in these components can occur. To account for these effects, FEV employs a multi-body-system modeling approach through which base engine information is used to determine optimized drivetrain setups. All mechanical elements in the setup are analyzed based on their torsional behavior.
Technical Paper

Hybrid Dynamic Analysis of Crankshaft-Crankcase for Off-Road Engine Application

2015-09-22
2015-36-0120
This work presents the results and methodology of a dynamic durability analysis considering the interaction between crankcase and crankshaft. The approach is based on a robust mathematical model that couples the dynamic characteristics of the crankshaft and crankcase, representing the actual interaction between both components. Dynamic loadings generated by the crankshaft are transferred to the crankcase through flexible 3D hydrodynamic bearings. This methodology is referred to as hybrid simulation, which consists in the solution of the dynamics of an Elastic Multi-Body System (E-MBS) coupled with the Finite Element Methodology (FEM). For this study, it was considered an in-line 6-cylinder diesel engine used in off-road applications. The crankcase design must withstand higher loads due to new calibration targets stipulated for PROCONVE (MAR-I) emission regulations.
X