Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Influence of the Mixture Formation on the Lubrication Oil Emission of Combustion Engines

2010-04-12
2010-01-1275
Partly competing objectives, as low fuel consumption, low friction, long oil maintenance rate, and at the same time lowest exhaust emissions have to be fulfilled. Diminishing resources, continuously reduced development periods, and shortened product cycles yield detailed knowledge about oil consumption mechanisms in combustion engines to be essential. There are different ways for the lubricating oil to enter the combustion chamber: for example as blow-by gas, leakage past valve stem seals, piston rings (reverse blow-by) and evaporation from the cylinder liner wall and the combustion chamber. For a further reduction of oil consumption the investigation of these mechanisms has become more and more important. In this paper the influence of the mixture formation and the resulting fuel content in the cylinder liner wall film on the lubricant oil emission was examined.
Journal Article

Development and Demonstration of LNT+SCR System for Passenger Car Diesel Applications

2014-04-01
2014-01-1537
The regulations for mobile applications will become stricter in Euro 6 and further emission levels and require the use of active aftertreatment methods for NOX and particulate matter. SCR and LNT have been both used commercially for mobile NOX removal. An alternative system is based on the combination of these two technologies. Developments of catalysts and whole systems as well as final vehicle demonstrations are discussed in this study. The small and full-size catalyst development experiments resulted in PtRh/LNT with optimized noble metal loadings and Cu-SCR catalyst having a high durability and ammonia adsorption capacity. For this study, an aftertreatment system consisting of LNT plus exhaust bypass, passive SCR and engine independent reductant supply by on-board exhaust fuel reforming was developed and investigated. The concept definition considers NOX conversion, CO2 drawback and system complexity.
Journal Article

Contribution of High Accuracy Temperature Sensors Towards Fuel Economy and Robust Calibration

2014-04-01
2014-01-1548
Tighter emission limits are discussed and established around the world to improve quality of the air we breathe. In order to control global warming, authorities ask for lower CO2 emissions from combustion engines. Lots of efforts are done to reduce engine out emissions and/or reduce remaining by suitable after treatment systems. Watlow, among others, a manufacturer of high accurate, active temperature sensor ExactSense™, wanted to understand if temperature sensor accuracy can have an influence on fuel consumption (FC). For this purpose a numerical approach was chosen where several non-road driving cycles (NRTCs) were simulated with the data base of a typical Stage IV heavy duty diesel engine. The engine is equipped with an exhaust gas after treatment system consisting of a DOC, CDPF and an SCR. In this work scope, the investigations shall be restricted to the FC benefits obtained in the active and passive DPF regeneration.
Journal Article

Development Trends for Commercial and Industrial Engines

2014-09-30
2014-01-2325
Exhaust emission reduction and improvements in energy consumption will continuously determine future developments of on-road and off-road engines. Fuel flexibility by substituting Diesel with Natural Gas is becoming increasingly important. To meet these future requirements engines will get more complex. Additional and more advanced accessory systems for waste heat recovery (WHR), gaseous fuel supply, exhaust after-treatment and controls will be added to the base engine. This additional complexity will increase package size, weight and cost of the complete powertrain. Another critical element in future engine development is the optimization of the base engine. Fundamental questions are how much the base engine can contribute to meet the future exhaust emission standards, including CO2 and how much of the incremental size, weight and cost of the additional accessories can be compensated by optimizing the base engine.
Journal Article

Optical Investigation of Combusting Split-Injection Diesel Sprays Under Quiescent Conditions

2013-09-08
2013-24-0034
Multiple-injection strategies are widely used in DI diesel engines. However, the interaction of the injection pulses is not yet fully understood. In this work, a split injection into a combustion vessel is studied by multiple optical imaging diagnostics. The vessel provides quiescent high-temperature, high-pressure ambient conditions. A common-rail injector which is equipped with a three-hole nozzle is used. The spray is visualized by Mie scattering. First and second stage of ignition are probed by formaldehyde laser-induced fluorescence (LIF) and OH* chemiluminescence imaging, respectively. In addition formation of soot is characterized by both laser-induced incandescence (LII) and natural luminosity imaging, showing that low-sooting conditions are established. These qualitative diagnostics yield ensemble-averaged, two-dimensional, time-resolved distributions of the corresponding quantities.
Technical Paper

Gasoline Particulate Filter Characterization Focusing on the Filtration Efficiency of Nano-Particulates Down to 10 nm

2020-09-15
2020-01-2212
With Post Euro 6 emission standards in discussion, stricter particulate number (PN) targets as well as a decreased PN cut-off size from 23 to 10 nm are expected. Sub-23 nm particulates are considered particularly harmful to human health, but are not yet taken into account in the current vehicle certification process. Not considering sub-23 nm particulates during the development process could lead to significant additional efforts for Original Equipment Manufacturers (OEM) to comply with future Post Euro 6 PN emission limits. It is therefore essential to increase knowledge about the formation and filtration of particulates below 23 nm. In the present study, a holistic Gasoline Particulate Filter (GPF) characterization has been carried out on an engine test bench under varying boundary conditions and on a burner bench with a novel ash loading methodology.
Journal Article

Cylinder Pressure Based Fuel Path Control for Non-Conventional Combustion Modes

2015-09-06
2015-24-2508
Model-based control strategies along with an adapted calibration process become more important in the overall vehicle development process. The main drivers for this development trend are increasing numbers of vehicle variants and more complex engine hardware, which is required to fulfill the more and more stringent emission legislation and fuel consumption norms. Upcoming fundamental changes in the homologation process with EU 6c, covering an extended range of different operational and ambient conditions, are suspected to intensify this trend. One main reason for the increased calibration effort is the use of various complex aftertreatment technologies amongst different vehicle applications, requiring numerous combustion modes. The different combustion modes range from heating strategies for active Diesel Particulate Filter (DPF) regeneration or early SCR light-off and rich combustion modes to purge the NOx storage catalyst (NSC) up to partially premixed combustion modes.
Journal Article

Fuel Economy Benefits for Commercial Diesel Engines with Waste Heat Recovery

2015-09-29
2015-01-2807
In the near future engine emitted carbon dioxides (CO2) are going to be limited for all vehicle categories with respect to the Green House Gases (GHG) norms. To tackle this challenge, new concepts need to be developed. For this reason waste heat recovery (WHR) is a promising research field. For commercial vehicles the first phase of CO2 emission legislation will be introduced in the USA in 2014 and will be further tightened towards 2030. Besides the US, CO2 emission legislation for commercial engines will also be introduced in Europe in the near future. The demanded CO2 reduction calls for a better fuel economy which is also of interest for the end user, specifically for the owners of heavy duty diesel vehicles with high mileages. To meet these future legislation objectives, a waste heat recovery system is a beneficial solution of recovering wasted energies from different heat sources in the engine.
Journal Article

Feedforward Control Approach for Digital Combustion Rate Shaping Realizing Predefined Combustion Processes

2015-04-14
2015-01-0876
The aim of this research collaboration focuses on the realization of a novel Diesel combustion control strategy, known as Digital Combustion Rate Shaping (DiCoRS) for transient engine operation. Therefore, this paper presents an initial, 3D-CFD simulation based evaluation of a physical model-based feedforward controller, considered as a fundamental tool to apply real-time capable combustion rate shaping to a future engine test campaign. DiCoRS is a promising concept to improve noise, soot and HC/CO emissions in parallel, without generating drawbacks in NOx emission and combustion efficiency. Instead of controlling distinct combustion characteristics, DiCoRS aims at controlling the full combustion process and therefore represents the highest possible degree of freedom for combustion control. The manipulated variable is the full injection profile, generally consisting of multiple injection events.
Journal Article

The Oxidation Potential Number: An Index to Evaluate Inherent Soot Reduction in D.I. Diesel Spray Plumes

2015-09-01
2015-01-1934
A new index to evaluate the inherent soot reduction in a diesel-like spray plume is proposed in this study. The index is named “Oxidation Potential Number” and was derived with the help of a computational fluid dynamics (CFD) software. C8 - C16 n-alkanes, 1-alcohols and di-n-ethers were studied with the help of this index over four part load engine operating conditions, representative of a C-class diesel vehicle. The CFD modelling results have shown that C8 molecules feature a higher potentiality to reduce the soot. Thus, C8 molecules were tested in a single cylinder diesel engine over the same operating conditions. In conclusion, the proposed index is compared with the soot engine out emission.
Journal Article

Engine in the Loop: Closed Loop Test Bench Control with Real-Time Simulation

2017-03-28
2017-01-0219
The complexity of automobile powertrains grows continuously. At the same time, development time and budget are limited. Shifting development tasks to earlier phases (frontloading) increases the efficiency by utilizing test benches instead of prototype vehicles (road-to-rig approach). Early system verification of powertrain components requires a closed-loop coupling to real-time simulation models, comparable to hardware-in-the-loop testing (HiL). The international research project Advanced Co-Simulation Open System Architecture (ACOSAR) has the goal to develop a non-proprietary communication architecture between real-time and non-real-time systems in order to speed up the commissioning process and to decrease the monetary effort for testing and validation. One major outcome will be a generic interface for coupling different simulation tools and real-time systems (e.g. HiL simulators or test benches).
Journal Article

Laser-Induced Incandescence Measurements of Tailor-Made Fuels in an Optical Single-Cylinder Diesel Engine

2017-03-28
2017-01-0711
The influence of two oxygenated tailor-made fuels on soot formation and oxidation in an optical single cylinder research diesel engine has been studied. For the investigation a planar laser-induced incandescence (PLII) measurement technique was applied to the engine in order to detect and evaluate the planar soot distribution for the two bio fuels within a laser light sheet. Furthermore the OH* chemiluminescence and broad band soot luminosity was visualized by high speed imaging to compare the ignition and combustion behavior of tested fuels: Two C8 oxygenates, di-n-butylether (DNBE) and 1-octanol. Both fuels have the same molecular formula but differ in their molecular structure. DNBE ignites fast and burns mostly diffusive while 1-octanol has a low cetane number and therefore it has a longer ignition delay but a more homogeneous mixture at time of ignition. The two bio fuels were finally compared to conventional diesel fuel.
Technical Paper

Analysis of Drivability Influence on Tailpipe Emissions in Early Stages of a Vehicle Development Program by Means of Engine-in-the-Loop Test Benches

2020-04-14
2020-01-0373
Due to increasing environmental awareness, standards for pollutant and CO2 emissions are getting stricter in most markets around the world. In important markets such as Europe, also the emissions during real road driving, so called “Real Driving Emissions” (RDE), are now part of the type approval process for passenger cars. In addition to the proceeding hybridization and electrification of vehicles, the complexity and degrees of freedom of conventional powertrains with internal combustion engines (ICE) are also continuing to increase in order to comply with stricter exhaust emission standards. Besides the different requirements placed on vehicle emissions, the drivability capabilities of passenger vehicles desired by customers, are essentially important and vary between markets.
Technical Paper

Relevance of Exhaust Aftertreatment System Degradation for EU7 Gasoline Engine Applications

2020-04-14
2020-01-0382
Exhaust aftertreatment systems must function sufficiently over the full useful life of a vehicle. In Europe this is currently defined as 160.000 km. With the introduction of Euro 7 it is expected that the required mileage will be extended to 240.000 km. This will then be consistent with the US legislation. In order to quantify the emission impact of exhaust system degradation, an Euro 7 exhaust aftertreatment system is aged by different accelerated approaches: application of the Standard Bench Cycle, the ZDAKW cycle, a novel ash loading method and borderline aging. The results depict the impact of oil ash on the oxygen storage capacity. For tailpipe emissions, the maximum peak temperatures are the dominant aging factor. The cold start performance is effected by both, thermal degradation and ash accumulation. An evaluation of this emission increase requires appropriate benchmarks.
Technical Paper

Hardware-in-the-Loop Testing of Electric Traction Drives with an Efficiency Optimized DC-DC Converter Control

2020-04-14
2020-01-0462
In order to reduce development cost and time, frontloading is an established methodology for automotive development programs. With this approach, particular development tasks are shifted to earlier program phases. One prerequisite for this approach is the application of Hardware-in-the-Loop test setups. Hardware-in-the-Loop methodologies have already successfully been applied to conventional as well as electrified powertrains considering various driving scenarios. Regarding driving performance and energy demand, electrified powertrains are highly dependent on the dc-link voltage. However, there is a particular shortage of studies focusing on the verification of variable dc-link voltage controls by Hardware-in-the-Loop setups. This article is intended to be a first step towards closing this gap. Thereto, a Hardware-in-the-Loop setup of a battery electric vehicle is developed.
Journal Article

Tomorrows Diesel Fuel Diversity - Challenges and Solutions

2008-06-23
2008-01-1731
Regulated emissions, CO2-values, comfort, good driveability, high reliability and costs, this is the main frame for all future powertrain developments. In this frame, the diesel powertrain, not only for passenger cars, but also for commercial vehicle applications, faces some challenges in order to fulfil the future European and current US emission legislations while keeping the fuel consumption benefit, good driveability and an acceptable cost frame. One of these challenges is the varying fuel qualities of diesel fuel in different countries including different cetane number, volatility, sulphur content and different molecular composition. In addition to that in the future, more and more alternative fuels with various fuel qualities and properties will be launched into the market for economical and environmental reasons. At present, the control algorithms of the injection system applied in most diesel engines is open loop control.
Journal Article

Performance Assessment of a Multi-Functional Reactor Under Conventional and Advanced Combustion Diesel Engine Exhaust Conditions

2011-04-12
2011-01-0606
Current progress in the development of diesel engines substantially contributes to the reduction of NOx and Particulate Matter (PM) emissions but will not succeed to eliminate the application of Diesel Particulate Filters (DPFs) in the future. In the past we have introduced a Multi-Functional Reactor (MFR) prototype, suitable for the abatement of the gaseous and PM emissions of the Low Temperature Combustion (LTC) engine operation. In this work the performance of MFR prototypes under both conventional and advanced combustion engine operating conditions is presented. The effect of the MFR on the fuel penalty associated to the filter regeneration is assessed via simulation. Special focus is placed on presenting the performance assessment in combination with the existing differences in the morphology and reactivity of the soot particles between the different modes of diesel engine operation (conventional and advanced). The effect of aging on the MFR performance is also presented.
Journal Article

Thermal Shock Protection for Diesel Particulate Filters

2011-12-15
2011-01-2429
During a thermal regeneration of a Diesel particulate filter (DPF) the temperature inside the DPF may raise above critical thresholds in an uncontrolled way (thermal shock). Especially driving conditions with a comparable low exhaust gas mass flow and high oxygen content like idle speed may create a thermal shock. This paper presents a concept for an ECU software structure to prevent the DPF from reaching improper temperatures and the methodology in order to calibrate this ECU structure. The concept deals in general with a closed-loop control of the exhaust gas air-fuel-ratio during the critical engine operation phases. Those critical operation phases are identified at the engine test bench during “Drop-to-Idle” and “Drop-to-Overrun” experiments. The experiments show that those phases are critical having on the one hand a low exhaust gas mass flow and on the other hand a high oxygen percentage in the exhaust gas.
Journal Article

Quantitative Fuel-Air-Mixing Measurements in Diesel-Like Sprays Emanating from Convergent and Divergent Multi-Layer Nozzles

2012-04-16
2012-01-0464
It is the objective of this work to characterize mixture formation in the sprays emanating from Multi-Layer (ML) nozzles under approximately engine-like conditions by quantitative, spatially, and temporally resolved fuel-air ratio and temperature measurements. ML nozzles are cluster nozzles which have more than one circle of orifices. They were introduced previously, in order to overcome the limitations of conventional nozzles. In particular, the ML design yields the potential of variable spray interaction, so that mixture formation could be controlled according to the operating condition. In general, it was also a primary aim of the cluster-nozzle concepts to combine the enhanced atomization and pre-mixing of small nozzle holes with the longer spray penetration lengths of large holes. The applied diagnostic, which is based on 1d spontaneous Raman scattering, yields the quantitative stoichiometric ratio and the temperature in the vapor phase.
Journal Article

Vehicle Demonstration of Naphtha Fuel Achieving Both High Efficiency and Drivability with EURO6 Engine-Out NOx Emission

2013-04-08
2013-01-0267
Demand for transport energy is growing but this growth is skewed heavily toward commercial transport, such as, heavy road, aviation, marine and rail which uses heavier fuels like diesel and kerosene. This is likely to lead to an abundance and easy availability of lighter fractions like naphtha, which is the product of the initial distillation of crude oil. Naphtha will also require lower energy to produce and hence will have a lower CO₂ impact compared to diesel or gasoline. It would be desirable to develop engine combustion systems that could run on naphtha. Many recent studies have shown that running compression ignition engines on very low Cetane fuels, which are very similar to naphtha in their auto-ignition behavior, offers the prospect of developing very efficient, clean, simple and cheap engine combustion systems. Significant development work would be required before such systems could power practical vehicles.
X