Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development of the 6.8L V10 Heat Resisting Cast-Steel Exhaust Manifold

1996-10-01
962169
This paper presents the experience of Ford Motor Company and Hitachi Metals Ltd., in the development and design of the exhaust manifolds for the new 1997 Ford 6.8L, Vl0 gasoline truck engine. Due to the high-exhaust temperature 1000 °C (1832 °F), heat-resisting nodular graphite irons, such as high-silicon molybdenum iron and austenitic iron with nickel cannot meet the durability requirements, mainly thermal fatigue evaluation. The joint effort by both companies include initial manifold design, prototype development, engine simulation bench testing, failure analysis, material selections (ferritic or austenitic cast steel), production processes (casting, machining) and final inspection. This experience can well be applied to the design and development of new cast stainless-steel exhaust manifolds in the future. This is valid due to the fact that US EPA is requiring all car manufacturers to meet the new Bag 6-Emission Standards which will result in increased exhaust gas temperature.
Technical Paper

1983 Ford Ranger Truck HSLA Steel Wheel

1982-02-01
820019
The demand for improved fuel economy in both cars and trucks has emphasized the need for lighter weight components. The application of high strength steel to wheels, both rim and disc, represents a significant opportunity for the automotive industry. This paper discusses the Ranger HSLA wheel program that achieved a 9.7 lbs. per vehicle weight savings relative to a plain carbon steel wheel of the same design. It describes the Ranger wheel specifications, the material selection, the metallurgical considerations of applying HSLA to wheels, and HSLA arc and flash butt welding. The Ranger wheel design and the development of the manufacturing process is discussed, including design modifications to accommodate the lighter gage. The results demonstrate that wheels can be successfully manufactured from low sulfur 60XK HSLA steel in a conventional high volume process (stamped disc and rolled rim) to meet all wheel performance requirements and achieve a significant weight reduction.
X