Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Journal Article

An Experimental Study of Diesel-Fuel Property Effects on Mixing-Controlled Combustion in a Heavy-Duty Optical CI Engine

2014-04-01
2014-01-1260
Natural luminosity (NL) and chemiluminescence (CL) imaging diagnostics are employed to investigate fuel-property effects on mixing-controlled combustion, using select research fuels-a #2 ultra-low sulfur emissions-certification diesel fuel (CF) and four of the Fuels for Advanced Combustion Engines (FACE) diesel fuels (F1, F2, F6, and F8)-that varied in cetane number (CN), distillation characteristics, and aromatic content. The experiments were performed in a single-cylinder heavy-duty optical compression-ignition (CI) engine at two injection pressures, three dilution levels, and constant start-of-combustion timing. If the experimental results are analyzed only in the context of the FACE fuel design parameters, CN had the largest effect on emissions and efficiency.
Technical Paper

Methodology for Developing and Validating Air Brake Tubes for Commercial Vehicles

2012-10-02
2012-36-0272
The pneumatic air brake system for heavy commercial trucks is composed by a large number of components, aiming its proper work and compliance with rigorous criteria of vehicular safety. One of those components, present along the whole vehicle, is the air brake tube, ducts which feed valves and reservoirs with compressed air, carrying signals for acting or releasing the brake system. In 2011, due to a lack of butadiene in a global scale, the manufacturing of these tubes was compromised; as this is an important raw material present on the polymer used so far, PA12. This article introduces the methodology of selecting, developing and validating in vehicle an alternative polymer for this application. For this purpose, acceptance criteria have been established through global material specifications, as well as bench tests and vehicular validation requirements.
Technical Paper

New Methodology to Improve the Engine Oil Level Indication in Commercial Trucks Assembly at End of Production Line

2011-10-04
2011-36-0164
This article is a new methodology to create a strong and reliable procedure to measure oil level at dealers. Most of time, commercial trucks run full loaded. Engine oil level indication systems are designed to measure oil level at that condition. However commercial trucks are assembled and sold empty and without bodies for trucks. In result of this condition, vehicles with a false indication of low engine oil level are detected at dealers' pre-delivery inspection, resulting in oil addition. This oil addition causes unnecessary costs, since vehicles are produced with maximum oil level. The methodology presented in this study analyzes and treats all variables involved in engine oil level measurements from engine production line until dealers' pre-delivery inspection
Technical Paper

A New Mechanism for Measuring Exhaust A/F

1993-11-01
932957
Exhaust gas air-fuel ratio (A/F) sensors are common devices in powertrain feedback control systems aimed at minimizing emissions. Both resistive (using TiO2) and electrochemical (using ZrO2) mechanisms are used in the high temperature ceramic devices now being employed. In this work a new mechanism for making the measurement is presented based on the change in the workfunction of a Pt film in interaction with the exhaust gas. In particular it is found that the workfunction of Pt increases reversibly by approximately 0.7 V at that point (the stoichiometric ratio) where the exhaust changes from rich to lean conditions. This increase arises from the adsorption of O2 on the Pt surface. On returning to rich conditions, catalytic reaction of the adsorbed oxygen with reducing species returns the workfunction to its original value. Two methods, one capacitive and one thermionic, for electrically sensing this workfunction change and thus providing for a practical device are discussed.
Technical Paper

Diesel Fuel Delivery Module for Light Truck Applications

1993-11-01
932980
This paper reviews the design and development of a self-filling, in-tank fuel system reservoir intended for use in diesel engine vehicle applications. This new idea eliminates engine driveability concerns (stumbles, hesitations, stalling, etc.) associated with an inconsistent supply of fuel from the fuel tank to the engine, particularly during sudden vehicle maneuvers and with low fuel tank conditions.
Technical Paper

Design Considerations for Natural Gas Vehicle Catalytic Converters

1993-11-01
933036
Bench reactor experiments were carried out to investigate the effects of operating temperature, precious metal loading, space velocity, and air-fuel (A/F) ratio on the performance of palladium (Pd) catalysts under simulated natural gas vehicle (NGV) exhaust conditions. The performance of these catalysts under simulated gasoline vehicle (GV) conditions was also investigated. In the case of simulated NGV exhaust, where methane was used as the prototypical hydrocarbon (HC) species, peak three-way conversion was obtained under richer conditions than required with simulated GV exhaust (propane and propene HC species). Moreover, the hydrocarbon efficiency of the catalyst under simulated NGV exhaust conditions was more sensitive to both A/F ratio and perturbations in A/F ratio than the HC efficiency under GV exhaust conditions.
Technical Paper

A New Method Development to Predict Brake Squeal Occurrence

1994-11-01
942258
A new method to predict brake squeal occurrence was developed by MSC under contract to Ford Motor Company. The results indicate that the stability characteristics of this disc brake assembly are governed mainly by the frictional properties between the pads and rotor. The stability is achieved when the friction coefficient of the pads is decreasing as the contact force increases. Based on the results, a stable brake system can be obtained without changing the brake structure by incorporating the appropriate frictional coefficient in the brake system. The method developed here can be also used as a tool to test the quality of any brake design in the early design stage.
Technical Paper

A New 5MPH Bumper System

1994-11-01
942277
A new bumper system which provides 8 kph (5 mph) vehicle protection with superior quality, outstanding durability and high value is in production. The system includes five new technologies: Hot stamped, ultra high strength front beam, 970 N/mm2 (160 KSI) which also is the #1 body structure crossmember. Ultra high strength roll formed rear beam 1150 N/mm2 (190 KSI). polypropylene foam isolators designed for controlled energy management Thermoplastic olefin (TPO), injection molded fascias Two component urethane paint for long term color, gloss and scratch resistance. This bumper system, installed on over 100,000 vehicles so far, meets both MPV and passenger car 8 kph standards. Consumer and insurance industry trends indicate increasing demand for Multi Purpose Vehicle (MPV) bumper systems which meet 8 kph criteria. The major competitors in the MPV market (Aerostar, Grand Caravan, Toyota Previa, GM APV's, and Mazda MPV) have either 0 kph or at best 4 kph systems.
Technical Paper

A Comparison of Time Domain and Frequency Domain Test Methods for Automotive Components

1994-11-01
942279
Frequency domain testing has had limited use in the past for durability evaluations of automotive components. Recent advances and new perspectives now make it a viable option. Using frequency domain testing for components, test times can be greatly reduced, resulting in considerable savings of time, money, and resources. Quality can be built into the component, thus making real-time subsystem and full vehicle testing and development more meaningful. Time domain testing historically started with block cycle histogram tests. Improved capabilities of computers, controllers, math procedures, and algorithms have led to real time simulation in the laboratory. Real time simulation is a time domain technique for duplicating real world environments using computer controlled multi-axial load inputs. It contains all phase information as in the recorded proving ground data. However, normal equipment limitations prevent the operation at higher frequencies.
Technical Paper

The New Ford Aeromax and Louisville Heavy Trucks: A Case Study in Applying Polar Plot Techniques to Vehicle Design

1995-11-01
952658
One of the major goals in the design of the new Ford Aeromax and Louisville heavy truck product line was to achieve competitive leadership in visibility. Market research found that visibility was an important issue to the heavy truck driver. Visibility is defined as both direct and indirect (i.e., the driver's ability to see with and without the use of supplemental vision devices such as mirrors) and both interior and exterior. The scope of this paper includes the work which was accomplished in evaluating direct and indirect exterior visibility and the resulting vehicle design which achieved Ford's leadership goals. Poor weather visibility and interior vision are beyond the scope of this paper. Polar Plots were the method of choice in the Aeromax/Louisville visibility studies. Industry acceptance of these techniques has been established in the recent approval of SAE J1750, “Evaluating the Truck Driver's Viewing Environment”.
Technical Paper

Optimized Damping to Control Rear End Breakaway in Light Trucks

1996-10-01
962225
Rear end break-away, or skate, is a phenomenon that occurs when live axle equipped vehicles are driven aggressively on rough, winding roads. This paper reviews instrumented dynamic testing of a specially built vehicle. Initial testing linked skate to the tramp oscillation mode of the rear axle. Two variables were evaluated for reducing skate: shock absorber valving and shock absorber placement. The principal conclusion of this work is that although some reductions in skate are possible by adjusting shock absorber valving, optimum control of skate is facilitated by packaging the shock absorbers near the wheels.
Technical Paper

Development of the 6.8L V10 Heat Resisting Cast-Steel Exhaust Manifold

1996-10-01
962169
This paper presents the experience of Ford Motor Company and Hitachi Metals Ltd., in the development and design of the exhaust manifolds for the new 1997 Ford 6.8L, Vl0 gasoline truck engine. Due to the high-exhaust temperature 1000 °C (1832 °F), heat-resisting nodular graphite irons, such as high-silicon molybdenum iron and austenitic iron with nickel cannot meet the durability requirements, mainly thermal fatigue evaluation. The joint effort by both companies include initial manifold design, prototype development, engine simulation bench testing, failure analysis, material selections (ferritic or austenitic cast steel), production processes (casting, machining) and final inspection. This experience can well be applied to the design and development of new cast stainless-steel exhaust manifolds in the future. This is valid due to the fact that US EPA is requiring all car manufacturers to meet the new Bag 6-Emission Standards which will result in increased exhaust gas temperature.
Technical Paper

Ford's SULEV Dedicated Natural Gas Trucks

1997-05-01
971662
Ford Motor Company has introduced its dedicated Natural Gas Vehicle (NGV) trucks as mid-year 1997 offerings to complement its dedicated Crown Victoria and bi-fuel Qualified Vehicle Modifier (QVM) product line-up. The 5.4L F-250 full-size pick-up truck and the 5.4L E-250/E-350 full-size vans are production vehicles maintaining Original Equipment Manufacturer (OEM) quality and warranty while complying with all applicable corporate, federal and state requirements. Both trucks are the first OEM vehicles to certify at the Super Ultra Low Emission Vehicle (SULEV) California medium-duty vehicle standard, the Federal Ultra Low Emission Vehicle (ULEV) standard, and the Federal Inherently Low Emission Vehicle (ILEV) emission standard. The use of natural gas (NG) as a vehicle fuel required unique hardware changes in the areas of fuel storage, fuel metering, and the emission control system.
Technical Paper

Mimic Control of Multi-Axis Systems

1967-02-01
670728
A concept for combining the separate manual controls of a multiaxis system was explored and demonstrated on a Ford backhoe. The four axes of the backhoe system receive their command signal from a single 4 degree-of-freedom controller. The motion of the backhoe then “mimics” that of the controller, generating a followup signal to close the control loop. This control system provides simultaneous, coordinated control of all four axes in response to natural movements of the human operator.
Technical Paper

1983 Ford Ranger Truck HSLA Steel Wheel

1982-02-01
820019
The demand for improved fuel economy in both cars and trucks has emphasized the need for lighter weight components. The application of high strength steel to wheels, both rim and disc, represents a significant opportunity for the automotive industry. This paper discusses the Ranger HSLA wheel program that achieved a 9.7 lbs. per vehicle weight savings relative to a plain carbon steel wheel of the same design. It describes the Ranger wheel specifications, the material selection, the metallurgical considerations of applying HSLA to wheels, and HSLA arc and flash butt welding. The Ranger wheel design and the development of the manufacturing process is discussed, including design modifications to accommodate the lighter gage. The results demonstrate that wheels can be successfully manufactured from low sulfur 60XK HSLA steel in a conventional high volume process (stamped disc and rolled rim) to meet all wheel performance requirements and achieve a significant weight reduction.
Technical Paper

Design of a Fuzzy Based AFS (Advanced Front Lightning System) to Improve Night-Time Driving for Truck Drivers: Foreseeing its Use in Emerging Markets

2014-04-01
2014-01-0435
Nighttime driving behavior differs from that during the day because of unique scenarios presented in a driver's field of vision. At night drivers have to rely on their vehicle headlamps to illuminate the road to be able to see the environment and road conditions in front of him. In recent decades car illumination systems have undergone considerable technological advances such as the use of a Light Emitting Diode (LED) in Adaptive Front-lighting Systems (AFS), a breakthrough in lighting technology. This is rapidly becoming one of the most important innovative technologies around the world within the lighting community. This paper discusses driver's needs given the environment and road conditions using a survey applied to compare the needs of both truck and car drivers under different road conditions. The results show the potential and suitability of the methodology proposed for controlling truck-related lighting in any emergent market.
Technical Paper

Methodology for Determining the Process of Riveting Brake Linings for Heavy Commercial Vehicles

2013-05-15
2013-36-0029
During the development of a new friction material, besides the interface between lining/drum is also fundamental take in account all aspects involving the attachment of the linings on the brake shoes. This paper presents an optimization approach to the development and manufacturing parameters of brake linings, applied on medium and heavy duty commercial vehicles, aiming to assure the correct specification of the riveted joint clamp forces. These evaluations were conducted based on the quality tools documents and the theoretical aspects of the product usage as well as the modeling of key elements of the referred mechanism throughout various known applications. A calculation methodology was developed based on brake geometry, its generated forces and braking reactions required for each vehicle family.
X