Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Additional Notes on Finite Element Models of Deformable Featureless Headform

1997-02-24
970164
Model characteristics of a finite element deformable featureless headform with one to four layers of solid elements for the headform skin are studied using both the LS-DYNA3D and FCRASH codes. The models use a viscoelastic material law whose constitutive parameters are established through comparisons of drop test simulations at various impact velocities with the test data. Results indicate that the one-layer model has a significant distinct characteristic from the other (2-to-4-layer) models, thus requiring different parametric values. Similar observation is also noticed in simulating drop tests with one and two layers of solid elements for the headform skin using PAM-CRASH. When using the same parametric values for the viscoelastic material, both the LS-DYNA3D and FCRASH simulations yield the same results under identical impact conditions and, thereby, exhibit a “functional equivalency” between these two codes.
Technical Paper

Effect of Polyurethane Foam on the Energy Management of Structural Components

2000-03-06
2000-01-0052
The effect of polyurethane structural foam on strength, stiffness, and energy absorption of foam filled structural components is investigated to formulate design directions that may be used in weight reduction and engineering functions of vehicle systems. An experimental/testing approach is first utilized using Taguchi’s DOE to identify design variables [foam density, gage, and material type], that are needed to determine the weight/performance ratio of structural hat-section components. An analytical CAE approach is then used to analyze the hat-section components using non-linear, large deformation finite element analysis. An accepted level of confidence in the CAE analytical tools is then established based on comparison of results between the two approaches.
Technical Paper

An Analytical Study on Headform Impact Protection Space for a Rigid Target

2000-03-06
2000-01-0608
This paper examines the theoretical worst case of normal headform impact on an infinitely rigid surface with the help of a dynamic spring-mass model. It is pointed out that the current approach is not an actual representation of any vehicle upper interior but is useful in gaining insight into the headform impact phenomenon and determining how to further enhance design. After considering force-deflection characteristics of a variety of commonly used headform impact protection countermeasures, a mathematical model is set up with spring properties that approximate those of physical countermeasures. Closed-form solutions are derived for various dynamic elasto-plastic phases including elastic unloading and contact. A parametric study is then carried out with HIC(d) as the dependent variable, and spring stiffness, yield force and spring length (representing countermeasure crush space) as the design variables.
X