Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Automatic Transmission Gear Whine Simulation and Test Correlation

2005-05-16
2005-01-2290
In order to effectively evaluate automatic transmission gear noise and vibration performance using a hemi-anechoic test facility, it is essential to understand the coupling mechanism between the transmission internals and the dynamometers and associated shafting. Once this coupling mechanism is well understood, each major frequency response of the resulting torsional vibration operating data can be properly categorized according to the source: transmission-internal, facility, or driveshaft. This knowledge helps noise and vibration engineers properly manage vibration peaks in transmission operating data by ensuring that the issue of concern is not inadvertently influenced by the facility system. Analytical simulations and tests were performed on a transmission operated in a hemi-anechoic facility to evaluate gear vibration using various driveshafts, followed by a program of vehicle testing.
Technical Paper

Gear Noise Reduction through Transmission Error Control and Gear Blank Dynamic Tuning

1999-05-17
1999-01-1766
Gear whine can be reduced through a combination of gear parameter selection and manufacturing process design directed at reducing the effective transmission error. The process of gear selection and profile modification design is greatly facilitated through the use of simulation tools to evaluate the details of the tooth contact analysis through the roll angle, including the effect of gear tooth, gear blank and shaft deflections under load. The simulation of transmission error for a range of gear designs under consideration was shown to provide a 3-5 dB range in transmission error. Use of these tools enables the designer to achieve these lower noise limits. An equally important concern is the dynamic mesh stiffness and transmissibility of force from the mesh to the bearings. Design parameters which affect these issues will determine the sensitivity of a transmission to a given level of transmission error.
Journal Article

Experimental Study on Enhanced FXLMS Algorithm for Active Impulsive Noise Control

2013-05-13
2013-01-1951
Active noise control (ANC) technique with the filtered-x least mean square (FXLMS) algorithm has proven its efficiency and drawn increasingly interests in vehicle noise control applications. However, many vehicle interior and/or exterior noises are exhibiting non-Gaussian type with impulsive characteristic, such as diesel knocking noise, injector ticking, impulsive crank-train noise, gear rattle, and road bumps, etc. Therefore, the conventional FXLMS algorithm that is based on the assumption of deterministic and/or Gaussian signal may not be appropriate for tackling this type of impulsive noise. In this paper, an ANC system configured with modified FXLMS (MFXLMS) algorithm by adding thresholds on reference and error signal paths is proposed for impulsive noise control. To demonstrate the effectiveness of the proposed algorithm, an experimental study is conducted in the laboratory.
X