Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Data Mining and Optimization Process with Shape and Size Design Variables Consideration for Vehicle Application

2018-04-03
2018-01-0584
This paper presents a design process with data mining technique and advanced optimization strategy. The proposed design method provides insights in three aspects. First, data mining technique is employed for analysis to identify key factors of design variables. Second, relationship between multiple types of size and shape design variables and performance responses can be analyzed. Last but not least, design preference can be initialized based on data analysis to provide priori guidance for the starting design points of optimization algorithm. An exhaust system design problem which largely contributes to the improvement of vehicular Noise, Vibration and Harshness (NVH) performance is employed for the illustration of the process. Two types of design parameters, structural variable (gauge of component) and layout variable (hanger location), are considered in the studied case.
Journal Article

Machine Learning Based Parameter Calibration for Multi-Scale Material Modeling of Laser Powder Bed Fusion (L-PBF) AlSi10Mg

2021-04-06
2021-01-0309
Rapid development of Laser Powder Bed Fusion (L-PBF) technology enables almost unconstrained design freedom for metallic parts and components in automotive industry. However, the mechanical properties of L-PBF alloys, AlSi10Mg for example, have shown significant differences when compared with their counterparts via conventional manufacturing process, due to the unique microstructure induced by extremely high heating and cooling rate. Therefore, microstructure informed material modeling approach is critical to fully unveil the process-structure-property correlation for such materials and enable the consideration of the effect of manufacturing during part design. Multi-scale material modeling approach, in which crystal plasticity finite element (CPFE) models were employed at the microscale, has been previously developed for L-PBF AlSi10Mg.
Journal Article

Towards Optimization of Multi-material Structure: Metamodeling of Mixed-Variable Problems

2016-04-05
2016-01-0302
In structural design optimization, it is challenging to determine the optimal dimensions and material for each component simultaneously. Material selection of each part is always formulated as a categorical design variable in structural optimization problems. However, it is difficult to solve such mixed-variable problems using the metamodelbased strategy, because the prediction accuracy of metamodels deteriorates significantly when categorical variables exist. This paper investigates two different strategies of mixed-variable metamodeling: the “feature separating” strategy and the “all-in-one” strategy. A supervised learning-enhanced cokriging method is proposed, which fuses multi-fidelity information to predict new designs’ responses. The proposed method is compared with several existing mixed-variable metamodeling methods to understand their pros and cons. These methods include Neural Network (NN) regression, Classification and Regression Tree (CART) and Gaussian Process (GP).
X