Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

DISI Spray Modeling Using Local Mesh Refinement

2008-04-14
2008-01-0967
The accurate prediction of fuel sprays is critical to engine combustion and emissions simulations. A fine computational mesh is often required to better resolve fuel spray dynamics and vaporization. However, computations with a fine mesh require extensive computer time. This study developed a methodology that uses a locally refined mesh in the spray region. Such adaptive mesh refinement will enable greater resolution of the liquid-gas interaction while incurring only a small increase in the total number of computational cells. The present study uses an h-refinement adaptive method. A face-based approach is used for the inter-level boundary conditions. The prolongation and restriction procedure preserves conservation of properties in performing grid refinement/coarsening. The refinement criterion is based on the mass of spray liquid and fuel vapor in each cell. The efficiency and accuracy of the present adaptive mesh refinement scheme is demonstrated.
Technical Paper

Parallel Computing of KIVA-4 Using Adaptive Mesh Refinement

2009-04-20
2009-01-0723
Parallel computing schemes were developed to enhance the computational efficiency of engine spray simulations with adaptive mesh refinement (AMR). Spray simulations have been shown to be grid dependent and thus fine mesh is often used to improve solution accuracy. In this study, dynamic mesh refinement adaptive to spray region was developed and parallelized in KIVA-4. The change of cell and node numbers and the local characteristics in the dynamic mesh refinement posed difficulties in developing efficient parallel computing schemes to achieve low communication overhead and good load balance. The present strategy executed AMR on one processor with data scattering among processors following the adaptation, and performed AMR every ten computational timesteps for enhanced parallel performance. The re-initialization was required and performed at the minimized cost.
Technical Paper

Numerical Study of Fuel Droplet Impact on Heated Surfaces Using Smoothed Particle Hydrodynamics Method

2019-04-02
2019-01-0291
The impact of fuel droplets on heated surfaces is of great importance in internal combustion engines. In engine computational fluid dynamics (CFD) simulations, the drop-wall interaction is usually considered by using models derived from experimental data and correlations rather than direct simulations. This paper presented a numerical method based on smoothed particle hydrodynamics (SPH), which can directly simulate the impact process of fuel droplets impinging on solid surfaces. The SPH method is a Lagrangian meshfree particle method. It discretizes fluid into a number of SPH particles and governing equations of fluid into a set of particle equations. By solving the particle equations, the movement of particles can be obtained, which represents the fluid flows. The SPH method is able to simulate the large deformation and breakup of liquid drops without using additional interface tracking techniques.
X